K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2021

ghghghghghghghghghghghghghghghghgh

29 tháng 11 2021

người mang cho em tỗn thương , em vẫn yêu vẫn ko than vãn 1 lời

10 tháng 2 2016

minh chua hok toi

10 tháng 2 2016

tớ mới học lớp 5 nên rút lui ! 

DD
29 tháng 11 2021

Dễ thấy số cần tìm là số có bốn chữ số. 

Đặt số cần tìm là \(\overline{abcd}\).

\(a=1\)hoặc \(a=2\).

Với \(a=1\):

\(\overline{1bcd}+1+b+c+d=1001+\overline{bcd}+b+c+d=2015\)

\(\Leftrightarrow\overline{bcd}+b+c+d=1014\)

\(\Leftrightarrow\overline{bcd}=1014-b-c-d\ge1014-9-9-9=987\)

Suy ra \(b=9\).

\(\overline{9cd}=1014-9-c-d\Leftrightarrow\overline{cd}=105-c-d\ge105-9-9=87\)

suy ra \(c=8\)hoặc \(c=9\).

Từ đây suy ra \(c=9,d=3\)thỏa mãn. 

Ta có số: \(1993\).

Với \(a=2\):

\(\overline{2bcd}+2+b+c+d=2015\)

Dễ thấy \(b=0\).

suy ra \(\overline{cd}+2000+2+0+c+d=2015\Leftrightarrow\overline{cd}+c+d=13\)

suy ra \(c=d=1\).

Ta có số: \(2011\).

Vậy ta có hai số thỏa mãn ycbt là \(1993,2011\).

29 tháng 11 2021

kông biết tem mới lớp 3

29 tháng 11 2021

em ko biết em lớp3

29 tháng 11 2021

gggggggggggggggggggggvvvvvvvvvvvvvvvvvvvvv

10 tháng 2 2016

Tôi làm theo cách này nếu đúng thì bạn mình nha !!!

 Theo đề bài S(n) là tổng các chữ số của n 

Mà S(n)+n=2015 là số có 4 chữ số nên suy ra n cũng là số có 4 chứ số 

 

29 tháng 11 2021

em không biết đúng hay sai em mới học lớp 3 thôi nên em không biết ạ

Bằng 45 đó ! k cho mình nhá còn giải để mình làm sau

8 tháng 1 2017

5 đúng rùi

4 tháng 1 2017

45 đó nha 

nhớ k cho mình đó 

4 tháng 1 2017

43 do ban

26 tháng 11 2017

Ta thấy : 

• n<3 chữ số:999+(9+9+9)<2016=> n>3 chữ số 

• n>5 chữ số: 9999+(9+9+9+9)>2016 

=> n có 4 chữ số 

Khi n có 4 chữ số ta có \(2016-36\le n\le2016=>1980\le n\le2016\)

  => n có dạng 19ab và 20cd

• TH1: n=19ab

Ta có: 19ab +1+9+a+b=2016

=> 1900+1+9+11a+2b=2016

=> 1910+11a+2b=2016

=> 11a+2b=106

Vì 2b chẵn, 106 chẵn => 11a là số chẵn

=> a là số chẵn

Mà a < 10 và n >= 1980

=> 11a=88 => a=8 => b=9

Ta có số 1989

•TH2: n=20cd 

Ta có 20cd +2+c+d=2016

=> 2002+11c+2d=2016

=> 11c+2d=14

Ta thấy 2d chẵn, 14 chẵn => 11c chẵn => c chẵn

Và 11c<14 => c=0 => d=7

Ta có số 2007

Vậy n=1989; n=2007

6 tháng 6 2020

Bạn Trịnh Quỳnh Nhi làm đúng rồi đó mình cũng làm như thế

26 tháng 9 2021

Giải:

Nếu nn là số có ít hơn 44 chữ số thì n999n≤999 và S(n)27S(n)≤27

n+S(n)999+27=1026<2014⇒n+S(n)≤999+27=1026<2014 (không thỏa mãn)

Mặt khác nn+S(n)=2014n≤n+S(n)=2014 nên nn là số ít hơn 55 chữ số

n⇒n là số có 44 chữ số S(n)9.4=36⇒S(n)≤9.4=36

Do vậy n201436=1978n≥2014−36=1978

Vì 1978n20141978≤n≤2014 nên [n=¯¯¯¯¯¯¯¯¯¯¯19abn=¯¯¯¯¯¯¯¯¯¯¯20cd[n=19ab¯n=20cd¯

*Nếu n=¯¯¯¯¯¯¯¯¯¯¯19abn=19ab¯ ta có:

¯¯¯¯¯¯¯¯¯¯¯19ab+(1+9+a+b)=201419ab¯+(1+9+a+b)=2014

1910+11a+2b=201411a+2b=104⇔1910+11a+2b=2014⇔11a+2b=104

Và 11a=1042b1042.9=8611a=104−2b≥104−2.9=86

810<aa=8⇒8≤10<a⇒a=8

b=8n=1988⇒b=8⇒n=1988 (thỏa mãn)

*Nếu n=¯¯¯¯¯¯¯¯¯¯¯20cdn=20cd¯ ta có:

¯¯¯¯¯¯¯¯¯¯¯20cd+(2+0+c+d)=201420cd¯+(2+0+c+d)=2014

2002+11c+2d=201411c+2d=12⇒2002+11c+2d=2014⇒11c+2d=12

Và 11c1211c≤12⇒[c=0c=1[c=0c=1

+) Với c=0d=6n=2006c=0⇒d=6⇒n=2006 (thỏa mãn)

+) Với c=12d=1c=1⇒2d=1 (không thỏa mãn)

Vậy n={1988;2006}