K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

2 giây trước (19:05)

Gọi O là điểm nằm trong  ΔABC. Chứng minh:

a. OA+OB+OC>AB+BC+CA/2

b. OA+OB+OC<AB+BC+CA

Vừa nãy viết hơi rối

9 tháng 2 2017

dễ mak a

a tự làm ik

4 tháng 6 2018

Ta có:

A B C O

\(OA+OB< AC+BC\)

\(OA+OC< AB+BC\)

\(OC+OB< AB+AC\) 

Cộng theo từng vế ba bất đẳng thức trên ta được :

\(2\left(OA+OB+OC\right)< 2\left(AB+AC+BC\right)\)

hay \(OA+OB+OC< AB+AC+BC\)(1)

Mặt khác trong các tam giác OAB,OBC,OCA,theo bất đẳng thức tam giác ta lại có :

\(OA+OB>AB\)

\(OB+OC>BC\)

\(OC+OA>AC\)

Cộng theo từng vế ba bất đẳng thức trên, ta được :

\(2\left(OA+OB+OC\right)>AB+BC+AC\)

hay \(OA+OB+OC>\frac{AB+AC+BC}{2}\)(2)

Từ (1) và (2) :

\(\Rightarrow\frac{AB+AC+BC}{2}< OA+OB+OC< AB+AC+BC.\)

13 tháng 3 2018

Thanks !

2 tháng 12 2018

uit n

19 tháng 5 2017

sai đề nhé bn. bạn đăng lại đi

20 tháng 5 2017

đề đúng mà bạn