K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

Câu hỏi của Phạm Trung Kiên - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!

2 tháng 8 2019

Câu hỏi của Phạm Trung Kiên - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!

23 tháng 7 2023

a) Ta có: HA = 2RcosA HB = 2RcosB HC = 2RcosC AB = 2RsinC AC = 2RsinB Vậy ta cần chứng minh: 2RcosA + 2RcosB + 2RcosC < 2RsinC + 2RsinB Chia cả 2 vế cho 2R, ta có: cosA + cosB + cosC < sinC + sinB Áp dụng bất đẳng thức tam giác, ta có: sinC + sinB > sin(A + B) = sinCOSA + cosCSINA = cosA + cosB Vậy ta có: cosA + cosB + cosC < sinC + sinB Do đó, ta có HA + HB + HC < AB + AC. b) Ta có: AB + BC + CA = 2R(sinA + sinB + sinC) = 2R(sinA + sinB + sin(A + B)) = 2R(2sin(A + B/2)cos(A - B/2) + sin(A + B)) = 4Rsin(A + B/2)cos(A - B/2) + 2Rsin(A + B) Vậy ta cần chứng minh: 2RcosA + 2RcosB + 2RcosC < 2332​ (4Rsin(A + B/2)cos(A - B/2) + 2Rsin(A + B)) Chia cả 2 vế cho 2R, ta có: cosA + cosB + cosC < 1166​(2sin(A + B/2)cos(A - B/2) + sin(A + B)) Áp dụng bất đẳng thức tam giác, ta có: sin(A + B) > sinC = sin(A + B/2 + B/2) = sin(A + B/2)cos(B/2) + cos(A + B/2)sin(B/2) Vậy ta có: 2sin(A + B/2)cos(A - B/2) + sin(A + B) < 2sin(A + B/2)cos(A - B/2) + sin(A + B/2)cos(B/2) + cos(A + B/2)sin(B/2) = sin(A + B/2)(2cos(A - B/2) + cos(B/2)) + cos(A + B/2)sin(B/2) = sin(A + B/2)(2cos(A - B/2) + cos(B/2)) + sin(B/2)cos(A + B/2) = sin(A + B/2)(2cos(A - B/2) + cos(B/2) + cos(A + B/2)) Vậy ta có: cosA + cosB + cosC < 1166​(2sin(A + B/2)cos(A - B/2) + sin(A + B)) < 1166​(sin(A + B/2)(2cos(A - B/2) + cos(B/2) + cos(A + B/2))) Do đó, ta có HA + HB + HC < 2332​(AB + BC + CA).

2 tháng 8 2019

Câu hỏi của Phạm Trung Kiên - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!

26 tháng 2 2018

Kẻ HD//AB,HE//ACHD//AB,HE//AC

\(\Rightarrow\)AD=HE;AE=AH

Theo BĐT trong tam giác :

AH<AE+HE=AE+ADAH<AE+HE=AE+AD
 ΔHDC vuông tại H :HC<DC
ΔBHE vuông tại H : HB<BE
\(\Rightarrow\)HA+HB+HC<AE+AD+BE+DC=AB+AC

Chứng minh tương tự ta được:
HA+HB+HC<AB+BCHA+HB+HC<AB+BC 
HA+HB+HC<AC+BCHA+HB+HC<AC+BC
\(\Rightarrow\) 3(HA+HB+HC)<2(AB+AC+BC)

\(\Rightarrow\)HA + HB + HC < \(\frac{2}{3}\)(AB+AC+BC)(ĐPCM)



-> HA+HB+HC<23(AB+AC+BC)

20 tháng 6 2020

Kẻ HD//AB ,HE//AC
−>AD=HE; AE=AH
Theo BĐT trong tam giác :
AH<AE+HE=AE+AD
xét ΔHDC vuông tại H :HC<DC
ΔBHE vuông tại H : HB<BE
−>HA+HB+HC<AE+AD+BE+DC=AB+AC
chứng minh tương tự:
HA+HB+HC<AB+BC
HA+HB+HC<AC+BC
K/h có :

3 (HA+HB+HC) < 2 (AB+AC+BC)
-> HA+ HB + HC< \(\frac{2}{3}\)(AB+AC+BC)

2 tháng 8 2019

Câu hỏi của Phạm Trung Kiên - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!

2 tháng 8 2019

Câu hỏi của Phạm Trung Kiên - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!