Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2:
ta có : điểm M nằm trên đường trung trực của BC nên M sẽ cách đều B và C => MB=MC
Ta có: AC=AM+MC
=> AC=AM+MB
Bài 2: Tam giác BNC cân tại N vì đường thẳng hạ từ N xuống vuong góc cạnh đối diện cũng là trung tuyến nên BN=NC
=> AN+BN=AN+NC=AC
Giải
Xét tam giác AMB và tam giác AMC
AM chung
AB=AC(gt)
MB=MC(AM là trung tuyến của tam giác ABC)
Vậy tam giác AMB= tam giác AMC(c.c.c)
Suy ra :góc BAM = góc CAM
Suy ra AM là hân giác của gócA
Ý b
Vì tam giác AMB= tam giác AMC(cmt)
suy ra
góc AMB= góc AMC
có góc AMB+AMC=180 độ
mà góc AMB=góc AMC=90 độ
Suy ra AM vuông góc với BC
tam giác AMB vuông tại B
Ý c
Vì MB=MC=3cm
Áp dụng định lý PI-TA-GO và tam giác vuông ta có
AB^2=MB^2+MA^2
25=9+MA^2
MA^2=16
MA=4cm
a)
AI là đường vuông góc kẻ từ A xuống đoạn thẳng BC.
\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}AI < AB\\AI < AC\end{array} \right.\\ \Rightarrow 2AI < AB + AC\\ \Rightarrow AI < \dfrac{1}{2}\left( {AB + AC} \right)\end{array}\) (đường vuông góc nhỏ hơn đường xiên)
b)
Lấy D sao cho M là trung điểm của AD
Xét \(\Delta ABM\) và \(DCM\) có
AM = DM ( do M là trung điểm của AD)
BM = CM ( do M là trung điểm của BC)
\(\widehat {AMB} = \widehat {CMD}\)( 2 góc đối đỉnh)
\( \Rightarrow \Delta ABM = \Delta DCM\left( {c - g - c} \right)\)
\( \Rightarrow AB = CD\)(2 cạnh tương ứng)
Xét \(\Delta ADC\) ta có: AD < AC + CD (bất đẳng thức tam giác)
\( \Rightarrow \) 2AM < AC + AB
\( \Rightarrow \) AM < \(\dfrac{1}{2}\)(AB + AC)