Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: f(x) có ĐKXĐ là 6-x>=0
=>x<=6
=>\(A=(-\infty;6]\)
g(x) có ĐKXĐ: là 2x+1<>0
=>\(x< >-\dfrac{1}{2}\)
=>\(B=R\backslash\left\{-\dfrac{1}{2}\right\}\)
\(A\cap B=(-\infty;6]\cap\left(R\backslash\left\{-\dfrac{1}{2}\right\}\right)\)
\(=(-\infty;6]\backslash\left\{\dfrac{1}{2}\right\}\)
\(A\cup B=R\)
\(A\text{B}=(-\infty;6]\backslash\left(R\backslash\left\{-\dfrac{1}{2}\right\}\right)=\left\{-\dfrac{1}{2}\right\}\)
\(B\backslash A=\left(6;+\infty\right)\)
Một hàm số cho bởi công thức y = f(x) mà không chú thích gì về tập các định thì ta quy ước rằng tập xác định của hàm số ấy là tập hợp tất cả x ∈ R sao cho biểu thức f(x) có nghĩa.
Hàm số \(y=\dfrac{x+1}{\left(x+1\right)\left(x^2+2\right)}\) có tập xác định là D = R/{-1}, còn hàm số \(y=\dfrac{1}{x^2+2}\). Do đó hai hàm số khác nhau (mặc dù rằng với mọi x ≠ -1 giá trị của hàm số luôn bằng nhau khi x lấy cùng một giá trị.
Ta có: A là tập nghiệm của đa thức P(x)
\( \Rightarrow A = \{ x \in \mathbb{R}|P(x) = 0\} \)
Để biểu thức \(\dfrac{1}{{P(x)}}\) xác định thì \(P(x) \ne 0\) hay \(x \notin A\).
Gọi B là tập hợp các số thực x sao cho biểu thức \(\dfrac{1}{{P(x)}}\) xác định.
\( \Rightarrow B =\{ x \in \mathbb{R}|P(x) \ne 0\}= \left\{ {x \in \mathbb{R}|x \notin A} \right\} = \mathbb{R}\,{\rm{\backslash }}\,A\)