K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2021

- Trans: Tìm diện tích tam giác đều nội tiếp đường tròn bán kính 6cm.

Giả sử ta có \(ΔABC \) nội tiếp \(O;6cm)\) và \(AB=AC=BC=x(cm)\)

Xét \(ΔABC\) đều có: \(O\) là trọng tâm tam giác

\(\Rightarrow \dfrac{AO}{AH}=\dfrac{2}{3}\) (H là hình chiếu của A trên BC)

Mà \(AO=R=6cm \Rightarrow AH=9(cm)\)

Áp dụng định lý Pytago vào \(ΔACH\) có:

\(AC^2 =AH^2+CH^2 \\ \Leftrightarrow x^2 = 9^2 + (\dfrac{x}{2})^2 \\ \Leftrightarrow x=6\sqrt{3}\)

\(\Rightarrow S_{ΔABC}=\dfrac{1}{2} AH.BC=\dfrac{1}{2} . 9.6\sqrt3 = 27\sqrt3 (cm^2)\)

Vậy \(S=27\sqrt{3}cm^2\)

12 tháng 10 2018

32/3 nha ban

1.  Two bisector BD and CE of the triangle ABC intersect at O. Suppose that BD.CE = 2BO.OC . Denote by H the point in BC such that .\(OH⊥BC\) . Prove that AB.AC = 2HB.HC 2. Given a trapezoid ABCD with the based edges BC=3cm , DA=6cm ( AD//BC ). Then the length of the line EF ( \(E\in AB,F\in CD\) and EF // AD ) through the intersection point M of AC and BD is ............... ? 3. Let ABC be an equilateral triangle and a point M inside the triangle such that \(MA^2=MB^2+MC^2\) . Draw...
Đọc tiếp

1.  Two bisector BD and CE of the triangle ABC intersect at O. Suppose that BD.CE = 2BO.OC . Denote by H the point in BC such that .\(OH⊥BC\) . Prove that AB.AC = 2HB.HC

 

2. Given a trapezoid ABCD with the based edges BC=3cm , DA=6cm ( AD//BC ). Then the length of the line EF ( \(E\in AB,F\in CD\) and EF // AD ) through the intersection point M of AC and BD is ............... ?

 

3. Let ABC be an equilateral triangle and a point M inside the triangle such that \(MA^2=MB^2+MC^2\) . Draw an equilateral triangle ACD where \(D\ne B\) . Let the point N inside \(\Delta ACD\) such that AMN is an equilateral triangle. Determine \(\widehat{BMC}\) ?

 

4. Given an isosceles triangle ABC at A. Draw ray Cx being perpendicular to CA, BE perpendicular to Cx \(\left(E\in Cx\right)\) . Let M be the midpoint of BE, and D be the intersection point of AM and Cx. Prove that \(BD⊥BC\)

 

0
8 tháng 12 2016

On the supposition that AB<AC

AK be the angle bisector of the triangle

\(\Rightarrow\)  \(\frac{KB}{KC}=\frac{AB}{AC}=\frac{2}{3}\)

\(\Rightarrow\frac{MB-MK}{MC+MK}=\frac{MC-MK}{MC+MK}=\frac{2}{3}\)

\(\Rightarrow3MC-3MK=2MC+2MK\)

\(\Rightarrow MC=5MK\)

\(\Rightarrow BK=MC-MK=5MK-MK=4MK\)

Let AH be the height of the triangle

\(\Rightarrow\frac{S_{AKM}}{S_{ABK}}=\frac{\frac{AH.KM}{2}}{\frac{BK.AH}{2}}=\frac{KM}{4KM}=\frac{1}{4}\)

If AB > AC then

\(\Rightarrow CM=5MK\)

\(\Rightarrow Bk=CM+MK=5MK+MK=6MK\)

\(\Rightarrow\frac{S_{AKM}}{S_{AKB}}=\frac{\frac{AH.MK}{2}}{\frac{AH.BK}{2}}=\frac{MK}{6MK}=\frac{1}{6}\)