Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Goi:d=UCLN\left(2n+3;2n+4\right)\)
\(Taco:\hept{\begin{cases}2n+3⋮d\\2n+4⋮d\end{cases}}\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy 2n+3 và 2n+4 nguyên tố cùng nhau
Đây là câu 6 nha
1. Ta có: A = 30 + 31 + 32 + ... + 3100
3A = 3.(1 + 3 + 32 + ... + 3100)
3A = 3 + 32 + 33 + ... + 3101
3A - A = (3 + 32 + 33 + ... + 3101) - (1 + 3 + 32 + ... + 3100)
2A = 3101 - 1
A = \(\frac{3^{101}-1}{2}\)
Vậy ...
Baif1 :
đặt \(A=3^0+3^1+3^2+...+3^{100}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)
\(\Rightarrow3A-A=\left(3+3^2+...+3^{101}\right)-\left(1+3+...+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-1\)
\(\Rightarrow A=\frac{3^{101}-1}{2}\)
Xin lỗi nha. Mk mún giúp lắm nhưng mk mới học lp 5 thui nên đọc đề ko hỉu gì hết đó.
mother du khó thế mik mới học lớp 1 0thui à quên hết kiến htuwcs lớp sáu rồi
6: \(\dfrac{2^{10}\cdot3^8-6^8}{4^4\cdot9^5}\)
\(=\dfrac{2^{10}\cdot3^8-2^8\cdot3^8}{2^8\cdot3^{10}}=\dfrac{2^8\cdot3^8\left(2^2-1\right)}{2^8\cdot3^{10}}=\dfrac{3}{3^2}=\dfrac{1}{3}\)
4:
TH1: p=3k+1
p+2024=3k+1+2024=3k+2025=3(k+675) chia hết cho 3
=>Loại
=>p=3k+2
p+2023=3k+2+2025=3k+2025=3(k+675) chia hết cho 3
=>p+2023 là hợp số