K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HT
0
21 tháng 4 2016
\(\Delta'=4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
\(=\left(c^2-\left(a-b\right)^2\right)\left(\left(a+b\right)^2-c^2\right)\)
\(=\left(c+a-b\right)\left(c-a+b\right)\left(a+b+c\right)\left(a+b-c\right)>0\)
=> pt luôn có 2 nghiệm pb .
có (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0
<=> 3x2-2(a+b+c)x-(ab+bc+ca)=0
vì phương trình có nghiện kép nên denta=0
\(\Delta=4\left(a+b+c\right)^2-12\left(ab+bc+ca\right)\)
\(=4\left(a^2+b^2+c^2-ab-bc-ca\right)\)
do đó \(a^2+b^2+c^2=ab+bc+ca\)
vì a, b, c là độ dài 3 cạnh của tam giác nên
a, b, c là các số dương
nên áp dụng bđt cosi ta có
\(a^2+b^2+c^2\ge ab+bc+ca\)
dấu bằng xảy ra khi a=b=c
vậy tam giác cần tìm là tam giác đều