Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}×\frac{x+\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\frac{1}{\sqrt{x}+2}\)
A đạt GTLN khi \(2+\sqrt{x}\)đạt GTNN hay x là nhỏ nhất. Vậy A đạt GTLN là \(\frac{1}{2}\)khi x = 0
\(a,ĐK:\hept{\begin{cases}x\ge0\\\sqrt{x}+2\ne0\\\sqrt{x}-2\ne0;4-x\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
Rút gọn :
\(A=\frac{4}{\sqrt{x}+2}+\frac{2}{\sqrt{x}-2}+\frac{5\sqrt{x}-6}{4-x}\)
\(A=\frac{4}{\sqrt{x}+2}+\frac{2}{\sqrt{x}-2}-\frac{5\sqrt{x}-6}{x-4}\)
\(A=\frac{4\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{5\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(A=\frac{4\sqrt{x}-8+2\sqrt{x}+4-5\sqrt{x}+6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(A=\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(A=\frac{1}{\sqrt{x}-2}\)
\(b,\)Để A nhận giá tri nguyên \(\Leftrightarrow\frac{1}{\sqrt{x}-2}\) nguyên
\(\Leftrightarrow\sqrt{x}-2\inƯ\left(1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=1\\\sqrt{x}-2=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=3\\\sqrt{x}=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=9\\x=1\end{cases}}}\)
Vậy A có giá tri nguyên \(\Leftrightarrow x\in\left\{1;9\right\}\)
a) DK : x > 0; x khác 1
\(P=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=x-\sqrt{x}+1\)
c ) \(Q=\frac{2\sqrt{x}}{P}=\frac{2\sqrt{x}}{x-\sqrt{x}+1}\)
<=> \(xQ-\left(Q+2\right)\sqrt{x}+Q=0\)(1)
TH1: Q = 0 => x = 0 loại
TH2: Q khác 0
(1) là phương trình bậc 2 với tham số Q ẩn x.
(1) có nghiệm <=> \(\left(Q+2\right)^2-4Q^2\ge0\)
<=> \(-3Q^2+4Q+4\ge0\)
<=> \(-\frac{2}{3}\le Q\le2\)
Vì Q nguyên và khác 0 nên Q = 1 hoặc Q = 2
Với Q = 1 => \(x-3\sqrt{x}+1=0\)
<=> \(\sqrt{x}=\frac{3}{2}\pm\frac{\sqrt{5}}{2}\)----> Tìm được x
Với Q = 2 => \(2x-4\sqrt{x}+1=0\Leftrightarrow\sqrt{x}=1\pm\frac{1}{\sqrt{2}}\)-----> tìm đc x.
Tự làm tiếp nhé! Kiểm tra lại đề bài câu b.
ĐKXĐ: ...
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2}{x}-\frac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\frac{\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{x\left(\sqrt{x}+1\right)}{\left(x+2\sqrt{x}\right)}=\frac{x}{\sqrt{x}-1}\)
\(x=\frac{2}{2-\sqrt{3}}=\frac{4}{4-2\sqrt{3}}=\left(\frac{2}{\sqrt{3}-1}\right)^2\)
\(\Rightarrow P=\frac{\frac{2}{2-\sqrt{3}}}{\frac{2}{\sqrt{3}-1}-1}=\frac{\frac{2}{2-\sqrt{3}}}{\frac{3-\sqrt{3}}{\sqrt{3}-1}}=\frac{2}{2\sqrt{3}-3}\)
\(\sqrt{P}\) xác định khi \(x>1\)
Khi đó: \(\sqrt{P}=\sqrt{\frac{x}{\sqrt{x}-1}}=\sqrt{\frac{x}{\sqrt{x}-1}-4+4}=\sqrt{\frac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}+4}\ge2\)
\(\sqrt{P}_{min}=2\) khi \(x=4\)