Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MK hứng bài nào thì lm bài đấy nhé!
Bài 21:
Ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
<=> \(\dfrac{ab+bc+ca}{abc}=0\)
<=> \(ab+bc+ac=0\)
<=> \(ab+bc+ac+c^2=c^2\)
<=> \(\sqrt{ab+bc+ac+c^2}=\sqrt{c^2}\)
<=> \(\sqrt{\left(a+c\right)\left(b+c\right)}=\left|c\right|\) (1)
Mặt khác: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) ; \(a,b>0;c\ne0\) => \(c< 0\) (2)
Từ (1); (2) => \(\sqrt{\left(a+c\right)\left(b+c\right)}=-c\)
<=> \(2\sqrt{\left(a+c\right)\left(b+c\right)}+2c=0\)
<=> \(\left(a+c\right)+2\sqrt{\left(a+c\right)\left(b+c\right)}+\left(b+c\right)=a+b\)
<=> \(\left(\sqrt{a+c}+\sqrt{b+c}\right)^2=\left(\sqrt{a+b}\right)^2\)
<=> \(\sqrt{a+c}+\sqrt{b+c}=\sqrt{a+b}\) => Đpcm
Các phương trình : \(x^2+ax+b=0\left(1\right)\) ; \(x^2+bx+c=0\left(2\right)\) ; \(x^2+cx+a=0\left(3\right)\)
Xét : \(\Delta_1=a^2-4b\) ; \(\Delta_2=b^2-4c\) ; \(\Delta_3=c^2-4a\)
Từ \(\begin{cases}a>b>c>0\\a+b+c=12\end{cases}\)\(\Rightarrow\begin{cases}a>4\\c< 4\\a>b>c>0\end{cases}\)
Ta có : \(a>b\Rightarrow4a>4b\Rightarrow a^2-4b>a^2-4a\Rightarrow\Delta_1>a\left(a-4\right)>0\)( vì a>4)
Do đó pt (1) luôn có nghiệm.
Tương tự : \(c< a\Rightarrow4c< 4a\Rightarrow c^2-4a< c^2-4c\Rightarrow\Delta_3< c\left(c-4\right)< 0\) ( vì 0<c<4)
Do đó pt (3) vô nghiệm.
Vậy có phương trình luôn có nghiệm và 1 phương trình vô nghiệm.
a) Xét tứ giác ADHE có: \(\widehat{ADH}=90\)
\(\widehat{DAE}=90\)
\(\widehat{AEH}=90\)
=> Tứ giác ADHE là hình chữ nhật
=>DE=AH
Áp dụng hệ thức liên quan tới đường cao ta có:
\(AH^2=HB\cdot HC=2\cdot8=16\)
=>AH=4
=>DE=AH=4
b)Gọi O là giao điểm của AH và DE
Vì ADHE là hình chữ nhật
=>OD=OA
=>ΔOAD cân tại O
=>\(\widehat{OAD}=\widehat{ODA}\)
Xét ΔABH vuông tại H(gt)
=>\(\widehat{BAH}+\widehat{B}=90\) (1)
Xét ΔABC vuông tại A(gt)
=>\(\widehat{B}+\widehat{C}=90\) (2)
Từ (1) (2) suy ra: \(\widehat{BAH}=\widehat{C}\)
Mà: \(\widehat{OAD}=\widehat{ODA}\) (cmt)
=> \(\widehat{ADE}=\widehat{ACB}\)
Xét ΔADE và ΔACB có
\(\widehat{DAE}=\widehat{CAB}=90\left(gt\right)\)
\(\widehat{ADE}=\widehat{ACB}\left(cmt\right)\)
=>ΔADE~ΔACB
Bạn đúng là 1 người tốt bụng , quan tâm tới bạn bè , chắc chắn mọi điều tốt sẽ đến vs bạn
Mặc dù mk ko bt bạn Hạ Thì là aiNNhưng mk chúc mừng sinh nhật bạn ấy
Bài 2 :
a ) \(\sqrt{4x-8}+\sqrt{x-2}=4+\dfrac{1}{3}\sqrt{9x-18}\) ( ĐKXĐ : \(x\ge2\) )
\(\Leftrightarrow2\sqrt{x-2}+\sqrt{x-2}=4+\dfrac{1}{3}.3\sqrt{x-2}\)
\(\Leftrightarrow3\sqrt{x-2}-\sqrt{x-2}=4\)
\(\Leftrightarrow2\sqrt{x-2}=4\)
\(\Leftrightarrow\sqrt{x-2}=2\)
\(\Leftrightarrow x-2=4\)
\(\Leftrightarrow x=2\) ( thỏa mãn ĐKXĐ )
Vậy phương trình có nghiệm x = 2 .
Bài 2 :
b ) \(\sqrt{x^2-6x+9}-\dfrac{\sqrt{6}+\sqrt{3}}{\sqrt{2}+1}=0\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}-\dfrac{\sqrt{3}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=0\)
\(\Leftrightarrow|x-3|-\sqrt{3}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3-\sqrt{3}=0\left(x\ge3\right)\\3-x-\sqrt{3}=0\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{matrix}\right.\)
Vậy phương trình cón nghiệm \(x=3+\sqrt{3}\) hoặc \(x=3-\sqrt{3}\) .
trả lời hộ êm đi ạ