">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

MK hứng bài nào thì lm bài đấy nhé!

Bài 21:

Ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

<=> \(\dfrac{ab+bc+ca}{abc}=0\)

<=> \(ab+bc+ac=0\)

<=> \(ab+bc+ac+c^2=c^2\)

<=> \(\sqrt{ab+bc+ac+c^2}=\sqrt{c^2}\)

<=> \(\sqrt{\left(a+c\right)\left(b+c\right)}=\left|c\right|\) (1)

Mặt khác: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) ; \(a,b>0;c\ne0\) => \(c< 0\) (2)

Từ (1); (2) => \(\sqrt{\left(a+c\right)\left(b+c\right)}=-c\)

<=> \(2\sqrt{\left(a+c\right)\left(b+c\right)}+2c=0\)

<=> \(\left(a+c\right)+2\sqrt{\left(a+c\right)\left(b+c\right)}+\left(b+c\right)=a+b\)

<=> \(\left(\sqrt{a+c}+\sqrt{b+c}\right)^2=\left(\sqrt{a+b}\right)^2\)

<=> \(\sqrt{a+c}+\sqrt{b+c}=\sqrt{a+b}\) => Đpcm

14 tháng 7 2017

tks bn nhiều

5 tháng 7 2016

Các phương trình : \(x^2+ax+b=0\left(1\right)\)    ;    \(x^2+bx+c=0\left(2\right)\)    ;    \(x^2+cx+a=0\left(3\right)\)

Xét : \(\Delta_1=a^2-4b\) ; \(\Delta_2=b^2-4c\)  ;  \(\Delta_3=c^2-4a\)

Từ \(\begin{cases}a>b>c>0\\a+b+c=12\end{cases}\)\(\Rightarrow\begin{cases}a>4\\c< 4\\a>b>c>0\end{cases}\)

Ta có :  \(a>b\Rightarrow4a>4b\Rightarrow a^2-4b>a^2-4a\Rightarrow\Delta_1>a\left(a-4\right)>0\)( vì a>4)

Do đó pt (1) luôn có nghiệm.

Tương tự : \(c< a\Rightarrow4c< 4a\Rightarrow c^2-4a< c^2-4c\Rightarrow\Delta_3< c\left(c-4\right)< 0\) ( vì 0<c<4)

Do đó pt (3) vô nghiệm.

Vậy có phương trình luôn có nghiệm và 1 phương trình vô nghiệm. 

 

12 tháng 10 2016

đẹp quá nhở

14 tháng 10 2016

xik lắm eyeu

2 tháng 9 2016

 Bảo Duy Cute sướng wá ha. có ngừi chúc n.n lun

2 tháng 9 2016

uk...thanks e 

1 tháng 8 2016

a) Xét tứ giác ADHE có: \(\widehat{ADH}=90\)

                                       \(\widehat{DAE}=90\)

                                        \(\widehat{AEH}=90\)

=> Tứ giác ADHE là hình chữ nhật

=>DE=AH

Áp dụng hệ thức liên quan tới đường cao ta có:

    \(AH^2=HB\cdot HC=2\cdot8=16\)

=>AH=4

=>DE=AH=4

b)Gọi O là giao điểm của AH và DE

Vì ADHE là hình chữ nhật

=>OD=OA

=>ΔOAD cân tại O

=>\(\widehat{OAD}=\widehat{ODA}\)

Xét ΔABH vuông tại H(gt)

=>\(\widehat{BAH}+\widehat{B}=90\)               (1)

Xét ΔABC vuông tại A(gt)

=>\(\widehat{B}+\widehat{C}=90\)                      (2)

Từ (1) (2) suy ra:  \(\widehat{BAH}=\widehat{C}\)

Mà: \(\widehat{OAD}=\widehat{ODA}\) (cmt)

=> \(\widehat{ADE}=\widehat{ACB}\) 

Xét ΔADE và ΔACB có     

 \(\widehat{DAE}=\widehat{CAB}=90\left(gt\right)\)

   \(\widehat{ADE}=\widehat{ACB}\left(cmt\right)\)

=>ΔADE~ΔACB

 

 

1 tháng 8 2016

cám ơn bạn :D

5 tháng 9 2016

Bạn đúng là 1 người tốt bụng , quan tâm tới bạn bè , chắc chắn mọi điều tốt sẽ đến vs bạn

5 tháng 9 2016

Mặc dù mk ko bt bạn Hạ Thì là aiNNhưng mk chúc mừng sinh nhật bạn ấy 

26 tháng 9 2017

Bài 2 :

a ) \(\sqrt{4x-8}+\sqrt{x-2}=4+\dfrac{1}{3}\sqrt{9x-18}\) ( ĐKXĐ : \(x\ge2\) )

\(\Leftrightarrow2\sqrt{x-2}+\sqrt{x-2}=4+\dfrac{1}{3}.3\sqrt{x-2}\)

\(\Leftrightarrow3\sqrt{x-2}-\sqrt{x-2}=4\)

\(\Leftrightarrow2\sqrt{x-2}=4\)

\(\Leftrightarrow\sqrt{x-2}=2\)

\(\Leftrightarrow x-2=4\)

\(\Leftrightarrow x=2\) ( thỏa mãn ĐKXĐ )
Vậy phương trình có nghiệm x = 2 .

26 tháng 9 2017

Bài 2 :

b ) \(\sqrt{x^2-6x+9}-\dfrac{\sqrt{6}+\sqrt{3}}{\sqrt{2}+1}=0\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}-\dfrac{\sqrt{3}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=0\)

\(\Leftrightarrow|x-3|-\sqrt{3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3-\sqrt{3}=0\left(x\ge3\right)\\3-x-\sqrt{3}=0\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{matrix}\right.\)

Vậy phương trình cón nghiệm \(x=3+\sqrt{3}\) hoặc \(x=3-\sqrt{3}\) .