K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Bài 1:

\(=-5^{22}+222+[-122-(100-5^{22})+2022]\)

\(=-5^{22}+222-122-100+5^{22}+2022\\ =(-5^{22}+5^{22})+(222-122-100)+2022\\ =0+0+2022=2022\)

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Bài 2:

$2n^2+n-6\vdots 2n+1$

$\Rightarrow n(2n+1)-6\vdots 2n+1$

$\Rightarrow 6\vdots 2n+1$

$\Rightarrow 2n+1\in Ư(6)$

Mà $2n+1$ lẻ nên $2n+1\in \left\{\pm 1; \pm 3\right\}$

$\Rightarrow n\in \left\{0; -1; 1; -2\right\}$

30 tháng 7 2021

 . .......................................................................................................................................jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 tháng 1

Tự làm đi, chắc là BTVN được giao hả, phải luyện


9 tháng 9 2018

a) ta có: n - 7 chia  hết cho n - 5

=> n - 5 - 2 chia hết cho n - 5

mà n -5 chia hết cho n - 5

=> 2 chia hết cho n - 5

=> n - 5 thuộc Ư(2)={1;-1;2-2}

...

rùi bn tự lập bảng xét giá trị nha

9 tháng 9 2018

b) ta có: n^2 - 2n - 22 chia hết cho n + 3

=> n^2 + 3n - 5n - 15 - 7 chi hết cho n + 3

n.(n+3) - 5.(n+3) - 7 chia hết cho  n + 3

(n+3).(n-5) - 7 chia hết cho n + 3

mà (n+3).(n-5) chia hết cho n + 3

=> 7 chia hết cho n + 3 

=> ...

23 tháng 8 2016

bnag a,b,c luon

1 tháng 10 2018

KNLNLKLFNK;KLNKALSKNK

11 tháng 10 2017

2. (n+5)\(⋮\)(n-1) 

(n-1+6) chia hết (n-1) 

 mà n-1 chia hết cho n-1 

Để (n-1+6) chia hết cho (n-1) thì 6 pải chia hết cho (n-1)

Hay (n-1) thuộc ước của 6 mà ước của 6=....

Tự làm tiếp nha ^^

11 tháng 10 2017

Làm giùm mình 1 bài thui cũng được, xin đó! 

Đặt n = 2k , ta có                      ( đk k >= 1 do n là một số chẵn lớn hơn 4)

\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)

\(=16k^4-32k^3-16k^2+32k\)

\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)

\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)

Nhận xét \(\left(k-1\right)k\left(k+1\right)\)  là 3 số tự nhiên liên tiếp nên 

\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3

Suy ra điều cần chứng minh

23 tháng 11 2016

câu 1:

a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:

2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2

b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z

  • a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.

mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.

vậy tích của 3 số nguyên liên tiếp chia hết cho 6.

c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z

  • vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.
  • tích của 3 số nguyên liên tiếp chia hết cho 3.
  • tích của 5 số nguyên liên tiếp chia hết cho 5.

vậy tích của 5 số nguyên liên tiếp chia hết cho 120.

câu 2:

a, a3 + 11a = a[(a- 1)+12] = (a - 1)a(a+1) + 12a

  • (a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)
  • 12a chia hết cho 6.

vậy a3 + 11a chia hết cho 6.

b, ta có a- a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1) 

mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m- m) - m(n3 -n)

theo (1) mn(m2-n2) chia hết cho 3.

c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)

3 tháng 2 2017

a) n2 + 4n - 8 = n2 + 3n + n + 3 - 11 = n(n + 3) + (n + 3) - 11 = (n + 1)(n + 3) - 11

Để biểu thức trên chia hết cho n + 3 thì 11 .: n + 3

=> n + 3 = -11 ; -1 ; 1 ; 11 => n = -14 ; -4 ; -2 ; 8

b) n2 + 5 = n2 - n + n - 1 + 6 = n(n - 1) + (n - 1) + 6 = (n + 1)(n - 1) + 6

Để biểu thức trên chia hết cho n - 1 thì 6 .: n - 1

=> n - 1 = -6 ; -1 ; 1 ; 6 => n = -5 ; 0 ; 2 ; 7

c) 2n+ 5 = 2n2 - 4n + 4n - 8 + 13 = n( 2n - 4) + 2(2n - 4) + 13 = (n + 2)(2n - 4) + 13

Để biểu thức trên chia hết cho n + 2 thì 13 .; n + 2

=> n + 2 = -13 ; -1 ; 1 ; 13 => n = -15 ; -3 ; -1 ; 11

Mình chỉ có thể giải câu d theo kiểu lớp 8

31 tháng 12 2018

a) n2 + 4n - 8 = n2 + 3n + n + 3 - 11 = n(n + 3) + (n + 3) - 11 = (n + 1)(n + 3) - 11

Để biểu thức trên chia hết cho n + 3 thì 11 .: n + 3

=> n + 3 = -11 ; -1 ; 1 ; 11 => n = -14 ; -4 ; -2 ; 8

b) n2 + 5 = n2 - n + n - 1 + 6 = n(n - 1) + (n - 1) + 6 = (n + 1)(n - 1) + 6

Để biểu thức trên chia hết cho n - 1 thì 6 .: n - 1

=> n - 1 = -6 ; -1 ; 1 ; 6 => n = -5 ; 0 ; 2 ; 7

c) 2n2 + 5 = 2n2 - 4n + 4n - 8 + 13 = n( 2n - 4) + 2(2n - 4) + 13 = (n + 2)(2n - 4) + 13

Để biểu thức trên chia hết cho n + 2 thì 13 .; n + 2

=> n + 2 = -13 ; -1 ; 1 ; 13 => n = -15 ; -3 ; -1 ; 11

14 tháng 3 2020

a) ta có 2n+3=2(n+2)-1

=> 1 chia hết cho n+2

n nguyên => n+2 nguyên => n+1 thuộc Ư (1)={-1;1}
Nếu n+1=-1 => n=-2

Nếu n+1=1 => n=0

Vậy n={-2;0}

b) Ta có n2+2n+5=n(n+2)+5

=> 5 chia hết cho n+2

n nguyên => n+2 nguyên => n+2 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng

n+2-5-115
n-7-3-13
14 tháng 3 2020

cảm ơn nhiều nha!