K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2019

Ta có :

  \(A=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}\right)\)

Ta thấy :

 \(\frac{1}{20}< \frac{1}{11}\)

 \(\frac{1}{20}< \frac{1}{12}\)

\(...\)

\(\frac{1}{20}< \frac{1}{19}\)

\(\Rightarrow\frac{1}{20}\cdot10< \frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\)

     \(\Rightarrow\frac{1}{2}< \frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\)(1)

\(\frac{1}{30}< \frac{1}{21}\)

\(\frac{1}{30}< \frac{1}{22}\)

\(...\)

\(\frac{1}{30}< \frac{1}{29}\)

\(\Rightarrow\frac{1}{30}\cdot10< \frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}\)

\(\Rightarrow\frac{1}{3}< \frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}\)(2)

     Từ (1),(2) :

\(\Rightarrow\frac{1}{2}+\frac{1}{3}< \frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\)

\(\Rightarrow\frac{5}{6}< A\)

                                                          \(#Louis\)

12 tháng 4 2017

a)ta có:

\(\frac{3}{10}\)>\(\frac{3}{15}\)

\(\frac{3}{11}\)>\(\frac{3}{15}\)

...

\(\frac{3}{14}\)>\(\frac{3}{15}\)

Cộng từng vế của bất đẳng thức trên ta được:

\(\frac{3}{10}\)+\(\frac{3}{11}\)+\(\frac{3}{12}\)+\(\frac{3}{13}\)+\(\frac{3}{14}\)<\(\frac{3}{15}\)+\(\frac{3}{15}\)+\(\frac{3}{15}\)+\(\frac{3}{15}\)+\(\frac{3}{15}\)

Hay S>\(\frac{15}{15}\)=>S>1               (1)

ta có :

\(\frac{3}{11}\)<\(\frac{3}{10}\)

\(\frac{3}{12}\)<\(\frac{3}{10}\)

...

\(\frac{3}{14}\)<\(\frac{3}{10}\)

Cộng từng vế của bất đẳng thức trên ta được:

\(\frac{3}{10}\)+\(\frac{3}{11}\)+\(\frac{3}{12}\)+\(\frac{3}{13}\)+\(\frac{3}{14}\)<\(\frac{3}{10}\)+\(\frac{3}{10}\)+\(\frac{3}{10}\)+\(\frac{3}{10}\)+\(\frac{3}{10}\)

Hay S<\(\frac{15}{10}\)<\(\frac{20}{10}\)=2

Vậy S<2                    (2)

Theo câu 1 ta có : S>1

Theo câu 2 ta có :S<2

Vậy 1<S<2 

=>S ko phải số tự nhiên

28 tháng 10 2016

mai nhé

3 tháng 6 2019

HÈ RỒI ÍT  NGƯỜI LÀM LẮM

3 tháng 6 2019

VỚI LẠI LÀ KO BIẾT ĐANG HỌC LỚP 5 LÊN LỚP 6

29 tháng 8 2018

\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{29}+\frac{1}{30}\)

\(A=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}\right)\)

\(A>\left(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)\)

\(A>10.\frac{1}{20}+10.\frac{1}{30}\)

\(A>\frac{1}{2}+\frac{1}{3}\)

\(A>\frac{5}{6}\)

Vậy \(A>\frac{5}{6}\)

Chúc bạn học tốt ~ 

29 tháng 8 2018

\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{29}+\frac{1}{30}\)

\(A=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}\right)\)

\(A>\left(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)\)

\(A>\frac{1}{20}\times10+\frac{1}{30}\times10\)

\(A>\frac{1}{2}+\frac{1}{3}\)

\(A>\frac{5}{6}\)

Vậy \(A>\frac{5}{6}\)