K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2022

-Hình vẽ:

undefined

a) -Xét △ABC có:

AM là trung tuyến (gt).

BN là trung tuyến (gt).

G là giao của AM và BN (gt)

=>G là trọng tâm của △ABC.

=>\(BG=\dfrac{2}{3}BN\)(1) (t/c trọng tâm).

\(CG=\dfrac{2}{3}CP\) (2) (t/c trọng tâm).

\(AG=\dfrac{2}{3}AM=2GM\) (t/c trọng tâm).

Mà \(GQ=2GM\) (M là trung điểm GQ).

=>\(GQ=AG=\dfrac{2}{3}AM\) (3).

-Từ (1),(2),(3) suy ra: Độ dài các đường trung tuyến của △BGQ bằng \(\dfrac{1}{2}\) độ dài các cạnh tương ứng của △ABC.

b) -Xét △BMQ và △CMG ta có:

\(BM=CM\) (M là trung điểm của BC).

\(\widehat{BMQ}=\widehat{CMG}\) (đối đỉnh).

\(MQ=MG\) (M là trung điểm GQ)

=>△BMQ = △CMG (c-g-c).

=>\(BQ=CG\) (2 cạnh tương ứng).

-Ta có: \(BC< BG+CG\) (bất đẳng thức trong △BGC).

=>\(BC< BG+BQ\) (\(BQ=CG\))

=>\(\dfrac{1}{2}BC< \dfrac{1}{2}\left(BG+BQ\right)\)

Mà \(BM=\dfrac{1}{2}BC\) (M là trung điểm BC).

=>\(BM< \dfrac{1}{2}\left(BG+BQ\right)\).

c) -Ta có: \(BG=2GN\) (G là trọng tâm của △ABC).

Mà \(BG=2IG\) (I là trung điểm của BG).

=>\(GN=IG\).

-Xét △IQG và △NAG có:

\(IG=NG\) (cmt).

\(\widehat{IGQ}=\widehat{NQA}\) (đối đỉnh).

\(QG=AG\) (cmt).

=>△IQG = △NAG (c-g-c).

=>\(IQ=AN\) (2 cạnh tương ứng) mà \(AN=\dfrac{1}{2}AC\) (N là trung điểm AC).

=>\(IQ=\dfrac{1}{2}AC\) (4).

-Ta có: \(CG=2GP\) (G là trọng tâm của △ABC).

Mà \(BQ=2BK\) (K là trung điểm BQ) và \(BQ=CG\) (cmt).

=>\(GP=BK\).

-Ta có: \(\widehat{BQM}=\widehat{CGM}\)(△BMQ = △CMG).

Mà 2 góc này ở vị trí so le trong.

=>BQ//CG.

-Xét △GBK và △BGP có: 
\(BK=GP\left(cmt\right)\)

\(\widehat{KBG}=\widehat{PGB}\) (BK//PQ và so le trong).

\(BG\) là cạnh chung.

=>△GBK = △BGP (c-g-c).

=>\(GK=BP\) (2 cạnh tương ứng) mà \(BP=\dfrac{1}{2}AB\) (P là trung điểm AB).

=>\(GK=\dfrac{1}{2}AB\) (2).

-Từ (1) và (2) và \(BM=\dfrac{1}{2}BC\) (M là trung điểm BC) suy ra:

Độ dài các đường trung tuyến của △BGP bằng \(\dfrac{1}{2}\) độ dài các cạnh tương ứng của △ABC.

 

24 tháng 7 2017

\(P=\dfrac{14^5.9^4-6^9.49^2}{2^{10}.49^3.3^8+6^8.7^5.13}\)

\(=\dfrac{2^5.7^5.3^8-2^9.3^9.7^4}{2^{10}.7^6.3^8+2^8.3^8.7^5.13}\)

\(=\dfrac{2^5.7^4.3^8\left(7-2^4.3\right)}{2^8.3^8.7^5\left(2^2.7+13\right)}\)

\(=\dfrac{-41}{2^3.7.41}\)

\(=\dfrac{-1}{56}\)

24 tháng 7 2017

thanks

\(P=\dfrac{2^5\cdot7^5\cdot3^8-2^9\cdot3^9\cdot7^4}{2^{10}\cdot7^6\cdot3^8+2^8\cdot3^8\cdot7^5\cdot13}\)

\(=\dfrac{2^5\cdot7^4\cdot3^8\left(7-2^4\cdot3\right)}{2^8\cdot3^8\cdot7^5\cdot\left(2^2\cdot7+13\right)}\)

\(=\dfrac{1}{8}\cdot\dfrac{1}{7}\cdot\dfrac{7-16\cdot3}{4\cdot7+13}=\dfrac{1}{56}\cdot\left(-1\right)=-\dfrac{1}{56}\)

2 tháng 8 2017

bài j

2 tháng 8 2017

Nguyễn An Vy BN VÀO ĐÂY XEM NHA

20 tháng 7 2017

Kẻ Cz//By (z thuộc nửa mặt phẳng bờ AC chứa B)

Ta có: góc zCB=góc CBy = 30 độ (so le trong)

Mà góc zCB + góc zCA=120 độ

=> góc zCA=90 độ.

=> Cz//Ax (cùng vuông góc AC)

Mà Cz//By => Ax//By

15 tháng 3 2017

2.

a) +) ta co: tam giác GLO

GL = 6, LO = 8, OG = 10

=> GL < LO < GO ( 6<8<10)

=> góc O < góc G < góc L ( quan hệ giữa góc và cạnh đối diện trong tam giác LOG )

+) ta co: tam giac UVW

góc V = 40, góc U = 50

=> góc W = 180 - ( góc V + goc Ư )

= 180 - ( 50 + 40)

= 90

=> góc V < góc U < góc W

=> UW < VW < VU ( quan hệ giữa cạnh và góc trong tam giác ACB )

15 tháng 3 2017

Bài 1 de rồi bạn tự làm nhé!!

8 tháng 4 2017

A B C M D 1 2

Câu a tớ chỉnh thế này: \(\Delta ABD=\Delta ACD\)

Giải:

a, ΔABD = ΔACD:

Xét ΔABM và ΔACM có:

+ AB = AC (ΔABC cân tại A)

+ AM là cạnh chung.

+ BM = CM (trung tuyến AM)

=> ΔABM = ΔACM (c - c - c)

=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc tương ứng)

Xét ΔABD và ΔACD có:

+ AB = AC (ΔABC cân tại A)

+ \(\widehat{A_1}=\widehat{A_2}\) (cmt)

+ AD là cạnh chung.

=> ΔABD = ΔACD (c - g - c)

b, ΔBDC cân:

Ta có: ΔABD = ΔACD (câu a)

=> BD = CD (2 cạnh tương ứng)

=> ΔBDC cân tại D.

8 tháng 4 2017

A B C D M

a) ΔABD=ΔACD

Xét ΔABM và ΔACM ta có:

AB=AC (ΔABC cân tại A)

AM chung

BM=BC (gt)

\(\Rightarrow\)ΔABM = ΔACM (c.c.c)

\(\Rightarrow\) \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)

Xét ΔABD và ΔACD ta có:

AB=AC (ΔABC cân tại A)

\(\widehat{BAM}=\widehat{CAM}\) (cmt)

AM cạnh chung

\(\Rightarrow\) ΔABD = ΔACD (c.g.c)

b) ΔBDC cân

Vì ΔABD = ΔACD ( theo câu a)

\(\Rightarrow\)BD=DC (2 cạnh tương ứng)

\(\Rightarrow\)ΔBDC cân tại D (đpcm)

12 tháng 3 2017

thiếu đề

\(c,\left(6,7+5,66-3,7+4,34\right).\left(-76,6.1,2+7,66.12\right)\)

=\(\left(6,7+5,66-3,7+4,34\right).\left(-7,6.12+7,66.12\right)=0\)

5 tháng 3 2017

Ta có:

(\(\dfrac{a}{b}\))3=\(\dfrac{1}{8000}\)

\(\Rightarrow\)(\(\dfrac{a}{b}\))3=(\(\dfrac{1}{20}\))3

\(\Rightarrow\)\(\dfrac{a}{b}\)=\(\dfrac{1}{20}\)

Theo tính chất tỉ lệ thức và tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{1}\)=\(\dfrac{b}{20}\)=\(\dfrac{a+b}{1+20}\)=\(\dfrac{42}{21}\)=2

\(\Rightarrow\)b=2.20=40

Vậy b=40

Học tốt!vui

5 tháng 3 2017

Ahihi em chịu ....!limdim