Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{14^5.9^4-6^9.49^2}{2^{10}.49^3.3^8+6^8.7^5.13}\)
\(=\dfrac{2^5.7^5.3^8-2^9.3^9.7^4}{2^{10}.7^6.3^8+2^8.3^8.7^5.13}\)
\(=\dfrac{2^5.7^4.3^8\left(7-2^4.3\right)}{2^8.3^8.7^5\left(2^2.7+13\right)}\)
\(=\dfrac{-41}{2^3.7.41}\)
\(=\dfrac{-1}{56}\)
\(P=\dfrac{2^5\cdot7^5\cdot3^8-2^9\cdot3^9\cdot7^4}{2^{10}\cdot7^6\cdot3^8+2^8\cdot3^8\cdot7^5\cdot13}\)
\(=\dfrac{2^5\cdot7^4\cdot3^8\left(7-2^4\cdot3\right)}{2^8\cdot3^8\cdot7^5\cdot\left(2^2\cdot7+13\right)}\)
\(=\dfrac{1}{8}\cdot\dfrac{1}{7}\cdot\dfrac{7-16\cdot3}{4\cdot7+13}=\dfrac{1}{56}\cdot\left(-1\right)=-\dfrac{1}{56}\)
Kẻ Cz//By (z thuộc nửa mặt phẳng bờ AC chứa B)
Ta có: góc zCB=góc CBy = 30 độ (so le trong)
Mà góc zCB + góc zCA=120 độ
=> góc zCA=90 độ.
=> Cz//Ax (cùng vuông góc AC)
Mà Cz//By => Ax//By
2.
a) +) ta co: tam giác GLO
GL = 6, LO = 8, OG = 10
=> GL < LO < GO ( 6<8<10)
=> góc O < góc G < góc L ( quan hệ giữa góc và cạnh đối diện trong tam giác LOG )
+) ta co: tam giac UVW
góc V = 40, góc U = 50
=> góc W = 180 - ( góc V + goc Ư )
= 180 - ( 50 + 40)
= 90
=> góc V < góc U < góc W
=> UW < VW < VU ( quan hệ giữa cạnh và góc trong tam giác ACB )
A B C M D 1 2
Câu a tớ chỉnh thế này: \(\Delta ABD=\Delta ACD\)
Giải:
a, ΔABD = ΔACD:
Xét ΔABM và ΔACM có:
+ AB = AC (ΔABC cân tại A)
+ AM là cạnh chung.
+ BM = CM (trung tuyến AM)
=> ΔABM = ΔACM (c - c - c)
=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc tương ứng)
Xét ΔABD và ΔACD có:
+ AB = AC (ΔABC cân tại A)
+ \(\widehat{A_1}=\widehat{A_2}\) (cmt)
+ AD là cạnh chung.
=> ΔABD = ΔACD (c - g - c)
b, ΔBDC cân:
Ta có: ΔABD = ΔACD (câu a)
=> BD = CD (2 cạnh tương ứng)
=> ΔBDC cân tại D.
A B C D M
a) ΔABD=ΔACD
Xét ΔABM và ΔACM ta có:
AB=AC (ΔABC cân tại A)
AM chung
BM=BC (gt)
\(\Rightarrow\)ΔABM = ΔACM (c.c.c)
\(\Rightarrow\) \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)
Xét ΔABD và ΔACD ta có:
AB=AC (ΔABC cân tại A)
\(\widehat{BAM}=\widehat{CAM}\) (cmt)
AM cạnh chung
\(\Rightarrow\) ΔABD = ΔACD (c.g.c)
b) ΔBDC cân
Vì ΔABD = ΔACD ( theo câu a)
\(\Rightarrow\)BD=DC (2 cạnh tương ứng)
\(\Rightarrow\)ΔBDC cân tại D (đpcm)
\(c,\left(6,7+5,66-3,7+4,34\right).\left(-76,6.1,2+7,66.12\right)\)
=\(\left(6,7+5,66-3,7+4,34\right).\left(-7,6.12+7,66.12\right)=0\)
Ta có:
(\(\dfrac{a}{b}\))3=\(\dfrac{1}{8000}\)
\(\Rightarrow\)(\(\dfrac{a}{b}\))3=(\(\dfrac{1}{20}\))3
\(\Rightarrow\)\(\dfrac{a}{b}\)=\(\dfrac{1}{20}\)
Theo tính chất tỉ lệ thức và tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{1}\)=\(\dfrac{b}{20}\)=\(\dfrac{a+b}{1+20}\)=\(\dfrac{42}{21}\)=2
\(\Rightarrow\)b=2.20=40
Vậy b=40
Học tốt!
-Hình vẽ:
a) -Xét △ABC có:
AM là trung tuyến (gt).
BN là trung tuyến (gt).
G là giao của AM và BN (gt)
=>G là trọng tâm của △ABC.
=>\(BG=\dfrac{2}{3}BN\)(1) (t/c trọng tâm).
\(CG=\dfrac{2}{3}CP\) (2) (t/c trọng tâm).
\(AG=\dfrac{2}{3}AM=2GM\) (t/c trọng tâm).
Mà \(GQ=2GM\) (M là trung điểm GQ).
=>\(GQ=AG=\dfrac{2}{3}AM\) (3).
-Từ (1),(2),(3) suy ra: Độ dài các đường trung tuyến của △BGQ bằng \(\dfrac{1}{2}\) độ dài các cạnh tương ứng của △ABC.
b) -Xét △BMQ và △CMG ta có:
\(BM=CM\) (M là trung điểm của BC).
\(\widehat{BMQ}=\widehat{CMG}\) (đối đỉnh).
\(MQ=MG\) (M là trung điểm GQ)
=>△BMQ = △CMG (c-g-c).
=>\(BQ=CG\) (2 cạnh tương ứng).
-Ta có: \(BC< BG+CG\) (bất đẳng thức trong △BGC).
=>\(BC< BG+BQ\) (\(BQ=CG\))
=>\(\dfrac{1}{2}BC< \dfrac{1}{2}\left(BG+BQ\right)\)
Mà \(BM=\dfrac{1}{2}BC\) (M là trung điểm BC).
=>\(BM< \dfrac{1}{2}\left(BG+BQ\right)\).
c) -Ta có: \(BG=2GN\) (G là trọng tâm của △ABC).
Mà \(BG=2IG\) (I là trung điểm của BG).
=>\(GN=IG\).
-Xét △IQG và △NAG có:
\(IG=NG\) (cmt).
\(\widehat{IGQ}=\widehat{NQA}\) (đối đỉnh).
\(QG=AG\) (cmt).
=>△IQG = △NAG (c-g-c).
=>\(IQ=AN\) (2 cạnh tương ứng) mà \(AN=\dfrac{1}{2}AC\) (N là trung điểm AC).
=>\(IQ=\dfrac{1}{2}AC\) (4).
-Ta có: \(CG=2GP\) (G là trọng tâm của △ABC).
Mà \(BQ=2BK\) (K là trung điểm BQ) và \(BQ=CG\) (cmt).
=>\(GP=BK\).
-Ta có: \(\widehat{BQM}=\widehat{CGM}\)(△BMQ = △CMG).
Mà 2 góc này ở vị trí so le trong.
=>BQ//CG.
-Xét △GBK và △BGP có:
\(BK=GP\left(cmt\right)\)
\(\widehat{KBG}=\widehat{PGB}\) (BK//PQ và so le trong).
\(BG\) là cạnh chung.
=>△GBK = △BGP (c-g-c).
=>\(GK=BP\) (2 cạnh tương ứng) mà \(BP=\dfrac{1}{2}AB\) (P là trung điểm AB).
=>\(GK=\dfrac{1}{2}AB\) (2).
-Từ (1) và (2) và \(BM=\dfrac{1}{2}BC\) (M là trung điểm BC) suy ra:
Độ dài các đường trung tuyến của △BGP bằng \(\dfrac{1}{2}\) độ dài các cạnh tương ứng của △ABC.