K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

\(\sqrt{x^3+8}=\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\le\frac{x^2-x+6}{2}\)

=>\(\frac{x^2}{\sqrt{x^3+8}}\ge\frac{2x^2}{x^2-x+6}\)

=>A\(\ge\frac{2\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)

mà \(\left(x+y+z\right)^2\ge3xy+3yz+3zx=9\)

=>\(x+y+z\ge3\)

Xét TS-MS= 2\(4\left(xy+yz+zx\right)+x+y+z-18\ge12+6-18=0\)

=>TS/MS \(\ge1\)

=>A\(\ge1\)

Dấu = khi x=y=z=1

5 tháng 6 2017

bn có cách giải chưa

bày mk vs

12 tháng 10 2020

sai lớp :>>>

12 tháng 10 2020

Rõ ràng \(x=y=z=0\)   là nghiệm của hệ

Với \(xyz\ne0\), Ta có

\(y=\frac{2x^2}{x^2+1}\le\frac{2x^2}{2x}=x\)

\(z=\frac{3y^3}{y^4+y^2+1}\le\frac{3y^3}{3y^2}=y\)

\(x=\frac{4z^4}{z^6+z^4+z^2+1}\le\frac{4z^4}{4z^3}=z\)

Suy ra \(y\le x\le z\le y\Rightarrow x=y=z\)

Từ pt thứ nhất của hệ suy ra 

\(\frac{2x^2}{x^2+1}=x\Leftrightarrow2x=1=x^2\)( vì \(x\ne0\))\(\Leftrightarrow x=1\)

Vậy hệ pt có hai nghiệm \(\left(0,0,0\right)\)và \(\left(1,1,1\right)\)

21 tháng 1 2018

Gọi 3 phương trình đó theo thứ tự là (1); (2); (3)

Lấy (1) - (2) ta được

x2 - z2 - 2x + 2z = 0

<=> (x - z)(x + z - 2) = 0

Làm tiếp sẽ ra

20 tháng 1 2018

Em mới học lớp 7 nên không biết làm đúng không nữa

Ta có hệ phương trình:

\(\hept{\begin{cases}x^2+y^2-2\left(x+y\right)=0\\y^2+z^2-2\left(y+z\right)=0\\x^2+z^2-2\left(x+z\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+y^2=2\left(x+y\right)=2x+2y\\y^2+z^2=2\left(y+z\right)=2y+2z\\x^2+z^2=2\left(x+z\right)=2x+2z\end{cases}}}\)(1)

Mà \(\hept{\begin{cases}x^2+y^2\ge0\\y^2+z^2\ge0\\x^2+z^2\ge0\end{cases}}\)Do đó \(\hept{\begin{cases}2x+2y\ge0\\2y+2z\ge0\\2x+2z\ge0\end{cases}}\)Suy ra \(x,y,z\ge0\)(2)

Từ (1) và (2):

\(\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)hoặc \(\hept{\begin{cases}x=2\\y=2\\z=2\end{cases}}\)

31 tháng 1 2018

Đặt \(\hept{\begin{cases}x+y=a\\xy=b\end{cases}}\) thì có hệ

\(\hept{\begin{cases}a+b=2+2\sqrt{2}\\a^2-2b=6\end{cases}}\)

Giờ thì rút thế là xong. Nên e tự làm nhé

31 tháng 1 2018

Đặt \(\hept{\begin{cases}x+y=a\\xy=b\end{cases}}\) thì có hệ

\(\hept{\begin{cases}a+b=2+3\sqrt{2}\\a^2-2b=6\end{cases}}\)

Giờ thì rút thế là xong. Nên e tự làm nhé

PS: Bài trên nhầm số 3 thành 2

2 tháng 2 2018

Có : 1 = (x+y+z)^2 = x^2+y^2+z^2+2.(xy+yz+zx)

Mà x^2+y^2+z^2 = 1 => 2.(xy+yz+zx) = 0 <=> xy+yz+zx = 0 <=> (xy+yz+zx).(x+y+z) = 0

Lại có : 1 = (x+y+z)^3 = x^3+y^3+z^3+6xyz+3.(x^2y+xy^2+y^2z+yz^2+z^2x+zx^2)

Mà x^3+y^3+z^3 = 1 => 6xyz+3.(x^2y+xy^2+y^2z+yz^2+z^2x+zx^2) = 0

<=> 0 = 6xyz+3.[xy.(x+y)+yz.(y+z)+zx.(z+x)] = 6xyz+3.[xy.(1-z)+yz.(1-x)+zx.(1-y)] = 6xyz+3.(xy+yz+zx-3xyz)

= 6xyz+3.(0-3xyz) = 6xyz-9xyz

<=> -3xyz = 0

<=> xyz = 0

<=> xyz=(xy+yz+zx).(x+y+z)

<=> (xy+yz+zx).(x+y+z)-xyz = 0

<=> x^2y+xy^2+y^2z+yz^2+z^2x+zx^2+2xyz = 0

<=> (x+y).(y+z).(z+x) = 0

<=> x+y=0 hoặc y+z=0 hoặc z+x=0

<=> x=-y hoặc y=-z hoặc z=-x

Đến đó bạn xét từng trường hợp mà cm nha