Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\left(x\right)=2x^2-x^3+x-3\)
\(B\left(x\right)=x^3-x^2+3-3x\)
a, Ta có : \(P\left(x\right)=A\left(x\right)+B\left(x\right)=2x^2-x^3+x-3+x^3-x^2+3-3x\)
\(=x^2-2x\)
b, Đề khs hiểu thế, đã là 1 đa thức thì luôn đặt đa thức ''='' 0 thôi :v
Đặt \(P\left(x\right)=x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy đa thức có nghiệm là 0;2
c, \(Q\left(x\right)=5x^2+a^2+ax\)
Ta có : \(Q\left(-1\right)=5\left(-1\right)^2+a^2+a\left(-1\right)=0\)
\(\Leftrightarrow5+a^2-a=0\)(cùy, ko nốt đc)
Suy ra : Vô nghiệm Vậy đa thức ko có nghiệm.
a) Xét tam giác BAD và tam giác BED có :
BA = BE ( gt )
^ABD = ^EBD ( BD là tia phân giác của ^B )
BD chung
=> Tam giác BAD = tam giác BED ( c.g.c )
=> AD = ED ( hai cạnh tương ứng )
=> ^BDA = ^BDE ( hai góc tương ứng )
mà ^BDA + ^BDE = 1800 ( kề bù )
=> ^BDA = ^BDE = 1800/2 = 900
=> BD vuông góc với AE ( đpcm )
b) BD vuông góc với AE
=> D thuộc AE
Lại có AD = ED
=> BD là đường trung trực của AE
Giải
a) Xét 2 tam giác BAD và tam giác BED có:
BD là cạnh chung
BA = BE ( gt )
Góc ABD = góc EBD ( gt )
Do đó : Tam giác BAD = tam giác BED (c.g.c )
=> góc BAD = góc BED ( hai cạnh tương ứng )
=> BED = 90° => DE vuông góc với BE
b) Theo câu a ta có : Tam giác BAD = tam giác BED => DA = DE nên D thuộc đừng trung trực của AE
Mà BA = BE ( gt ) nên B thuộc đừng trung trực của AE
Vậy BD là đường trung trực của AE
Học tốt
a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(Cạnh huyền-góc nhọn)
b) Ta có: ΔBAD=ΔBHD(cmt)
nên BA=BH(hai cạnh tương ứng) và DA=DH(Hai cạnh tương ứng)
Ta có: BA=BH(cmt)
nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DA=DH(cmt)
nên D nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của AH(đpcm)
c) Xét ΔADE vuông tại A và ΔHDC vuông tại H có
DA=DH(cmt)
\(\widehat{ADE}=\widehat{HDC}\)(hai góc đối đỉnh)
Do đó: ΔADE=ΔHDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: AE=HC(Hai cạnh tương ứng)
Ta có: BA+AE=BE(A nằm giữa B và E)
BH+HC=BC(H nằm giữa B và C)
mà BA=BH(cmt)
và AE=HC(cmt)
nên BE=BC(đpcm)
d) Ta có: ΔADE=ΔHDC(cmt)
nên DE=DC(Hai cạnh tương ứng)
Ta có: BE=BC(cmt)
nên B nằm trên đường trung trực của EC(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: DE=DC(cmt)
nên D nằm trên đường trung trực của EC(Tính chất đường trung trực của một đoạn thẳng)(4)
Từ (3) và (4) suy ra BD là đường trung trực của EC
hay BD\(\perp\)EC(đpcm)
e) Ta có: DA=DH(cmt)
mà DH<DC(ΔDHC vuông tại H)
nên DA<DC(đpcm)
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A