Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó:CM=CA
hay C nằm trên đường trung trực của AM(1)
ta có: OA=OM
nên O nằm trên đường trung trực của AM(2)
Từ (1) và (2) suy ra OC là đường trung trực của AM
hay OC⊥AM tại trung điểm của AM
=>K là trung điểm của AM
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB
hay D nằm trên đường trung trực của MB(3)
ta có: OM=OB
nên O nằm trên đường trung trực của MB(4)
Từ (3) và (4) suy ra OD là đường trung trực của MB
=>OD⊥MB và I là trung điểm của MB
Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
Xét tứ giác MKOI có \(\widehat{MKO}=\widehat{MIO}=\widehat{IMK}=90^0\)
nên MKOI là hình chữ nhật
b: Xét ΔMAC có
K là trung điểm của MA
I là trung điểm của MB
Do đó: KI là đường trung bình
=>KI//AB
hay KI⊥AC
Bài 4:
a:
Xét (O) có
ΔCED nội tiếp
CD là đường kính
=>ΔCED vuông tại E
ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
Xét tứ giác CEMF có
I là trung điểm chung của CM và EF
CM vuông góc EF
=>CEMF là hình thoi
=>CE//MF
=<MF vuông góc ED(1)
Xét (O') có
ΔMPD nội tiêp
MD là đường kính
=>ΔMPD vuông tại P
=>MP vuông góc ED(2)
Từ (1), (2) suy ra F,M,P thẳng hàng
b: góc IPO'=góc IPM+góc O'PM
=góc IEM+góc O'MP
=góc IEM+góc FMI=90 độ
=>IP là tiếp tuyến của (O')