Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Hai số tự nhiên liên tiếp có tích là 600, mà tích có chữ số tận cùng là 0, nên các thừa số của nó không có thừa số nào có chữ số tận cùng là 1, 3, 7, 9. Hai số đó chỉ có thể có chữ số tận cùng là 0, 2 , 4, 5 , 6, 8.
Ta có hai số tự nhiên liên tiếp là:
24, 25 và 45, 46 và 55, 56
Thử các cặp số này ta thấy:
55 x 56 = 3080 ( khác 600 loại )
45 x 46 = 2070 ( khác 600 loại )
24 x 25 = 600 ( chọn )
Vậy hai số tự nhiên liên tiếp có tích là 600 là:24 và 25
a) 109+2 =10....02 \(⋮\)3
Vì 1+0+0+....+2=3
b) 5.7.9.11 chia hết cho 3 (vì 9 chia hết cho 3)
104.105.106 chia hết cho 3 (vì 105 chia hết cho 3)
=> 5.7.9.11+104.105.106 là hợp số
acswrdwrdewredryrfgytrutyut
jrhjrhejhtrttt
gjgrhgwerhj34wr
hfurjr34.wtb4wg5
Vì a và b là 2 số lẻ liên tiếp => a=4k+1 và b=4k+3
=>(a+b):2=(4k+3+4k+1):2=(8k+4):2=4k+2
Vì 4k+2 chia hết cho 2 và 4k+2>2=>4k+2 là HS
=>(a+b):2 là HS
Tổng hai số nguyên tố là một số nguyên tố. Vậy hiệu của 2 số nguyên tố đó là 1 số nguyên tố hay là 1 hợp số .
VD : 7-3 = 4 ( hợp số )
5-2 = 3 ( số nguyên tố )
Chúc bn hok tốt !
1
gọi số cần tìm là p.dễ thấy p lẻ
=>p=a+2 và p=b-2
=>a=p-2 và b=p+2
vì p-2,p,p+2 là 3 số lẻ liên tiếp nên có một số chia hết cho 3
với p-2=3=>p=5=7-2(chọn)
p=3=>p=1+2(loại)
p+2=3=>p=1(loại)
vậy p=5
2
vì p1, p2, p3 là 3 số nguyên tố (SNT) > 3
theo giả thiết:
p3 = p2 + d = p1 + 2d (*)
=> d = p3 - p2 là số chẵn ( vì p3, p2 lẻ)
đặt d = 2m, xét các trường hợp:
* m = 3k => d chia hết cho 6
* m = 3k + 1: khi đó 3 số là:
p2 = p1 + d = p1 + 2m = p1 + 6k + 2
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 4
do p1 là SNT > 3 nên p1 chia 3 dư 1 hoặc 2
nếu p1 chia 3 dư 1 => p2 = p1 + 6k + 2 chia hết cho 3 => p2 là hợp số (không thỏa gt)
nếu p1 chia 3 dư 2 => p3 = p1 + 12k + 4 chia hết cho 3 => p3 là hợp số (---nt--)
=> p1, p2 , p3 là SNT khi m ≠ 3k + 1
* m = 3k + 2, khi đó 3 số là:
p2 = p1 + d = p1 + 2m = p1 + 6k + 4
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 8
nếu p1 chia 3 dư 1 => p3 = p1 + 12k + 8 chia hết cho 3 => p3 là hợp số (không thỏa gt)
nếu p 1 chia 3 dư 2 => p2 = p1 + 6k + 4 chia hết cho 3 => p2 là hợp số ( không thỏa gt)
=> p1, p2 , p3 là SNT khi m ≠ 3k + 2
vậy để p1, p 2, p 3 đồng thời là 3 SNT thì m = 3k => d = 2m = 6k chia hết cho 6.
3
ta có p,p+1,p+2 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.
mà p,p+2 là SNT >3 nên p,p+2 ko chia hết cho 3 và là số lẻ
=>p+1 chia hết cho 3 và p+1 chẵn=>p+1 chia hết cho 6
4
vì p là SNT >3=>p=3k+1 hoặc p=3k+2
với p=3k+1=>p+8=3k+9 chia hết cho 3
với p=3k+2=>p+4=3k+6 ko phải là SNT
vậy p+8 là hợp số
5
vì 8p-1 là SNt nên p>3=>8p ko chia hết cho 3
vì 8p,8p+1,8p-1 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.mà 8p,8p-1 là SNT >3=>8p+1 chia hết cho 3 và 8p+1>3
=>8p+1 là hợp số
6.
Ta có: Xét:
+n=0=>n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15(hợp số,loại)
+n=1
=>n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16(hợp số,loại)
+n=2
=>n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17(hợp số,loại)
+n=3
=>n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18(hợp số,loại)
+n=4
n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19(SNT,chọn)
Nếu n>4 sẽ có dạng 4k+1;4k+2;4k+3
+n=4k+1
⇔n+3=4k+1+3=4k+4⇔n+3=4k+1+3=4k+4(hợp số,loại)
+n=4k+2
=>n+13=4k+2+13=4k+15n+13=4k+2+13=4k+15(hợp số,loại)
+n=4k+3
=>n+3=4k+3+3=4k+6n+3=4k+3+3=4k+6(hợp số,loại)
⇔n=4
4.vì p là số nguyên tố >3
nên p có dạng 3k+1;3k+2
xét p=3k+1 ta có :p+4=(3k+1)+4=3k+5(thỏa mãn)
xét p=3k+2 ta có: p+4=(3k+2)+4=3k+6 chia hết cho 3(trái với đề bài)
vậy p+8=(3k+1)+8=3k+9 chia hết cho 3
Vậy p+8 là hợp số
Gọi d là ƯC của 7n + 10 và 5n + 7
Khi đó : 7n + 10 chia hết cho d và 5n + 7 chia hết cho d
<=> 5.(7n + 10) chia hết cho d và 7.(5n + 7) chia hết cho d
<=> 35n + 50 chia hết cho d và 35n + 49 chia hết cho d
=> (35n + 50) - (35n + 49) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau
Gọi d là ƯC của 7n + 10 và 5n + 7
Khi đó : 7n + 10 chia hết cho d và 5n + 7 chia hết cho d
<=> 5.(7n + 10) chia hết cho d và 7.(5n + 7) chia hết cho d
<=> 35n + 50 chia hết cho d và 35n + 49 chia hết cho d
=> (35n + 50) - (35n + 49) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau
a. Không vì sở dĩ số4 đã là hợp số
b. Ở đây là hai số phải ko? Có vì tổng hai số là số lẻ=> có một số chẵn và một số lẻ. Số lẻ là snt thì chắc chắn rồi còn số chẵn thì là 2. Vậy ở đây là có