K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2022

a) Xét ▲ABD và ▲ACD có:

\(\widehat{BAD}=\widehat{CAD}\) (AD là đường phân giác của \(\widehat{BAC}\))

AB=AC (▲ABC cân tại A).

AD là cạnh chung.

=>▲ABD = ▲ACD (c-g-c)

=> BD=CD (2 cạnh tương ứng) hay D là trung điểm BC. (1)

\(\widehat{ADB}=\widehat{ADC}\) (2 góc tương ứng)

Mà \(\widehat{ADB}+\widehat{ADC}=180^0\) (kề bù)

=>\(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

=>AD⊥BC tại D (2)

- Từ (1) và (2) suy ra: AD là đường trung trực của BC.

b) Xét ▲AIF và ▲AIE có:

\(\widehat{FAI}=\stackrel\frown{EAI}\) (AI là đường phân giác của \(\widehat{FAE}\) )

AF=AE (gt)

AI là cạnh chung.

=>▲AIF = ▲AIE  (c-g-c)

=>\(\widehat{AFI}=\widehat{AEI}\) (2 góc tương ứng)

\(\widehat{AEI}=90^0\)(BE⊥AC tại E)

=>\(\widehat{AFI}=90^0\) hay IF⊥AB tại F.

c) Xét ▲ABC có:

AD là đường cao (AD⊥BC tại I)

BE là đường cao (BE⊥AC tại E)

AD cắt BE tại I (gt)

=> I là trực tâm của ▲ABC.

=>CI⊥AB mà IF⊥AB (cmt)

=>CI trùng với IF hay C,I,F thẳng hàng.

23 tháng 1 2022

Thanksvui

14 tháng 4 2017

Nguyễn Thanh Xuân uh vui

14 tháng 4 2017

Bạn vào link này nha: https://hoc24.vn/hoi-dap/question/208608.html

27 tháng 4 2017

thực sự là mình không biết vẽ hình

Chứng minh

a, Xét \(\Delta ABE\)\(\Delta DBE\)

BE chung

\(\widehat{BAE}=\widehat{BDE}\) (=1v)

BA = BD (gt)

\(\Rightarrow\Delta ABE=\Delta DBE\left(ch-cgv\right)\)

b, \(\Delta ABE=\Delta DBE\) (câu a )

\(\Rightarrow\widehat{ABE}=\widehat{DBE}\) (hai gó tương ứng)

\(\Rightarrow EA=ED\) (hai cạnh tương ứng) (1)

\(\Delta EDC\) vuông tại D

\(\Rightarrow EC>ED\) (2)

Từ (1) và (2) \(\Rightarrow EC>EA\)

Gọi N là giao điểm của AD và BE

Xét \(\Delta ABN\)\(\Delta DBN\) có :

BA = BD (gt)

\(\widehat{ABN}=\widehat{DBN}\) (c/m trên)

BN chung

\(\Rightarrow\Delta ABN=\Delta DBN\) (c.g.c)

\(\Rightarrow AN=ND\) (hai cạnh tương ứng) (3)

\(\widehat{ANB}=\widehat{DNB}\) (hai góc tương ứng)

\(\widehat{ANB}+\widehat{DNB}=180^O\)

\(\Rightarrow\widehat{ANB}=\widehat{DNB}\) (=1v) (4)

Từ (3) và (4) \(\Rightarrow BE\) là đường trung trực của AD

27 tháng 4 2017

a) xét 2 tam giac vuong ABE va DBE co

AB = BD (gt)

BE canh chung

suy ra: tam giac ABE = tam giac DBE (ch-cgv)

b) tu cau a) Tam giac ABE = tam giac DBE

Suy ra :AE = DE (2 canh tuong ung) (1)_

trong tam giác EDC vuông tại D

suy ra : EC > DE (canh huyen lon hon cach goc vuong ) (2)

Tu (1) va (2) suy ra: EC >EA

Ta co : AE=ED (cmt)

suy ra: E thuộc đường trung trực của AD (3)

ta có:AB=BD(gt)

suy ra: B thuoc duong trung truc AD (4)

tu (3) va (4) suy ra: BE la duong trung truc cua AD


A B C E D M

26 tháng 12 2018

a) Xét tam giác ABC và tam giác ACD có:
AB=AC (gt)
^A1=^A2 (AD là tia phân giác của BC
AD chung
Suy ra: tam giác ABD =tam giác ACD(c.g.c)
VÌ tam giác  ABD= tam  giác ACD
Suy ra: BD=CD( hai cạnh tương ứng ) (1)
mà D1+D2( kề bù )
 D1+D2=180 độ chia 2=90 độ
suy ra:AD vuông góc với BC(2)
Từ 1 và 2 suy ra:
AD là trung trực của BC
b) LẦN SAU

27 tháng 12 2016

Bài 1( Hình mik đăng lên trước nha, mới lại phần bn nối điểm K với B, điểm F với D hộ mik nhé)

a) Xét tam giác EFA và tam giác CAB, có:

AE = AC ( giả thiết)

AF = AB (giả thiết)

Góc EAF = góc BAC (2 góc đối đỉnh)

=> ΔEAF = ΔCAB (c.g.c)

b) Vì ΔEFA = ΔCAB (Theo a)

=> Góc ABC = Góc EFA (cặp góc tương ứng)

=> EF = BC (cặp cạnh tương ứng) (1)

Mà EK = KF = 1/2 EF (2)

BD = DC = 1/2 BC (3)

Từ (1), (2) và (3)

=> KF = BD

Xét ΔKFB và ΔFBD, có

Cạnh BF chung

KF = BD (chứng minh trên)

Góc EFB = Góc ABC (chứng minh trên)

=> ΔKFB =ΔDBF (c.g.c)

=> KB = FD (cặp cạnh tương ứng)

3 tháng 5 2017

Hình bạn tự vẽ nha !

Chứng minh

a, Áp dụng định lí Pi-ta-go vào \(\Delta ABC\) vuông tại A , ta có :

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC^2=8^2+6^2=64+36=100\)

\(\Rightarrow BC=10\)

b, Xét \(\Delta BEA\)\(\Delta DEA\) có :

AB = AD (gt)

\(\widehat{BAE}=\widehat{DAE}\) (=1v)

AE chung

\(\Rightarrow\Delta BEA=\Delta DEA\left(c.g.c\right)\)

c, Xét \(\Delta BCD\) có CA là đường trung tuyến ứng với cạnh BD và \(EA=\dfrac{1}{3}AC\) nên E là trọng tâm của \(\Delta BCD\)

Vậy DE đi qua trung điểm của cạnh BC

giúp mik vs huhu!!! 1.Cho ΔABC cân tại A. Kẻ AH ⊥ BC (H ∈ BC). Chứng minh rằng: a. HB = HC. b. ^ BAH = ^ CAH 2.Cho ΔABC cân tại A. Qua B kẻ đường thẳng vuông góc với AB, qua C kẻ đường thẳng vuông góc với AC, chúng cắt nhau tại D. Chứng minh rằng AD là tia phân giác của góc A. 3. Cho ΔABC có M là trung điểm của BC, AM là tia phân giác của góc A. Kẻ MH⊥AB (H ∈ AB), MK⊥AC (K ∈ AC). Chứng minh rằng: a. MH...
Đọc tiếp

giúp mik vs huhu!!!khocroi

1.Cho ΔABC cân tại A. Kẻ AH ⊥ BC (H ∈ BC). Chứng minh rằng:

a. HB = HC.

b. ^ BAH = ^ CAH

2.Cho ΔABC cân tại A. Qua B kẻ đường thẳng vuông góc với AB, qua C kẻ đường thẳng vuông góc với AC, chúng cắt nhau tại D. Chứng minh rằng AD là tia phân giác của góc A.

3. Cho ΔABC có M là trung điểm của BC, AM là tia phân giác của góc A. Kẻ MH⊥AB (H ∈ AB), MK⊥AC (K ∈ AC). Chứng minh rằng:

a. MH = MK

b. Bˆ = Cˆ

4.Hai đoạn thẳng AB và CD vuông góc với nhau tại trung điểm của mỗi đoạn. Chứng minh rằng : AC/ /BD và AC = BD.

5.Cho ΔABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH ⊥ AD (H ∈ AD), kẻ CK ⊥ AE (K ∈ AE). Chứng minh rằng: BH = CK.

6.Cho ΔABC có AB < AC. Tia phân giác của góc A cắt đường trung trực của BC tại I. Kẻ IH ⊥ AB (H ∈ AB), kẻ IK ⊥ AC (K ∈ AC). Chứng minh rằng : BH = CK.

7.Cho ΔABC vuông ở A. Từ A kẻ AH ⊥ BC (H ∈ BC). Trên cạnh BC lấy điểm E sao cho BE = BA. Kẻ EK ⊥ AC (K ∈ AC).

Chứng minh AK = AH.

HELP ME!!eoeo

2
3 tháng 3 2017

Có mấy bài dễ dễ mà ^.^

Sao ko động não bạn nhỉ ? vui

3 tháng 3 2017

chuẩn Nguyễn Phương Thảo, vs lại mấy pài này dạng cx kha khá giống nhau