Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thực sự là mình không biết vẽ hình
Chứng minh
a, Xét \(\Delta ABE\) và \(\Delta DBE\) có
BE chung
\(\widehat{BAE}=\widehat{BDE}\) (=1v)
BA = BD (gt)
\(\Rightarrow\Delta ABE=\Delta DBE\left(ch-cgv\right)\)
b, \(\Delta ABE=\Delta DBE\) (câu a )
\(\Rightarrow\widehat{ABE}=\widehat{DBE}\) (hai gó tương ứng)
\(\Rightarrow EA=ED\) (hai cạnh tương ứng) (1)
mà \(\Delta EDC\) vuông tại D
\(\Rightarrow EC>ED\) (2)
Từ (1) và (2) \(\Rightarrow EC>EA\)
Gọi N là giao điểm của AD và BE
Xét \(\Delta ABN\) và \(\Delta DBN\) có :
BA = BD (gt)
\(\widehat{ABN}=\widehat{DBN}\) (c/m trên)
BN chung
\(\Rightarrow\Delta ABN=\Delta DBN\) (c.g.c)
\(\Rightarrow AN=ND\) (hai cạnh tương ứng) (3)
và \(\widehat{ANB}=\widehat{DNB}\) (hai góc tương ứng)
mà \(\widehat{ANB}+\widehat{DNB}=180^O\)
\(\Rightarrow\widehat{ANB}=\widehat{DNB}\) (=1v) (4)
Từ (3) và (4) \(\Rightarrow BE\) là đường trung trực của AD
a) xét 2 tam giac vuong ABE va DBE co
AB = BD (gt)
BE canh chung
suy ra: tam giac ABE = tam giac DBE (ch-cgv)
b) tu cau a) Tam giac ABE = tam giac DBE
Suy ra :AE = DE (2 canh tuong ung) (1)_
trong tam giác EDC vuông tại D
suy ra : EC > DE (canh huyen lon hon cach goc vuong ) (2)
Tu (1) va (2) suy ra: EC >EA
Ta co : AE=ED (cmt)
suy ra: E thuộc đường trung trực của AD (3)
ta có:AB=BD(gt)
suy ra: B thuoc duong trung truc AD (4)
tu (3) va (4) suy ra: BE la duong trung truc cua AD
A B C E D M
a) Xét tam giác ABC và tam giác ACD có:
AB=AC (gt)
^A1=^A2 (AD là tia phân giác của BC
AD chung
Suy ra: tam giác ABD =tam giác ACD(c.g.c)
VÌ tam giác ABD= tam giác ACD
Suy ra: BD=CD( hai cạnh tương ứng ) (1)
mà D1+D2( kề bù )
D1+D2=180 độ chia 2=90 độ
suy ra:AD vuông góc với BC(2)
Từ 1 và 2 suy ra:
AD là trung trực của BC
b) LẦN SAU
Bài 1( Hình mik đăng lên trước nha, mới lại phần bn nối điểm K với B, điểm F với D hộ mik nhé)
a) Xét tam giác EFA và tam giác CAB, có:
AE = AC ( giả thiết)
AF = AB (giả thiết)
Góc EAF = góc BAC (2 góc đối đỉnh)
=> ΔEAF = ΔCAB (c.g.c)
b) Vì ΔEFA = ΔCAB (Theo a)
=> Góc ABC = Góc EFA (cặp góc tương ứng)
=> EF = BC (cặp cạnh tương ứng) (1)
Mà EK = KF = 1/2 EF (2)
BD = DC = 1/2 BC (3)
Từ (1), (2) và (3)
=> KF = BD
Xét ΔKFB và ΔFBD, có
Cạnh BF chung
KF = BD (chứng minh trên)
Góc EFB = Góc ABC (chứng minh trên)
=> ΔKFB =ΔDBF (c.g.c)
=> KB = FD (cặp cạnh tương ứng)
Hình bạn tự vẽ nha !
Chứng minh
a, Áp dụng định lí Pi-ta-go vào \(\Delta ABC\) vuông tại A , ta có :
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC^2=8^2+6^2=64+36=100\)
\(\Rightarrow BC=10\)
b, Xét \(\Delta BEA\) và \(\Delta DEA\) có :
AB = AD (gt)
\(\widehat{BAE}=\widehat{DAE}\) (=1v)
AE chung
\(\Rightarrow\Delta BEA=\Delta DEA\left(c.g.c\right)\)
c, Xét \(\Delta BCD\) có CA là đường trung tuyến ứng với cạnh BD và \(EA=\dfrac{1}{3}AC\) nên E là trọng tâm của \(\Delta BCD\)
Vậy DE đi qua trung điểm của cạnh BC
a) Xét ▲ABD và ▲ACD có:
\(\widehat{BAD}=\widehat{CAD}\) (AD là đường phân giác của \(\widehat{BAC}\))
AB=AC (▲ABC cân tại A).
AD là cạnh chung.
=>▲ABD = ▲ACD (c-g-c)
=> BD=CD (2 cạnh tương ứng) hay D là trung điểm BC. (1)
\(\widehat{ADB}=\widehat{ADC}\) (2 góc tương ứng)
Mà \(\widehat{ADB}+\widehat{ADC}=180^0\) (kề bù)
=>\(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)
=>AD⊥BC tại D (2)
- Từ (1) và (2) suy ra: AD là đường trung trực của BC.
b) Xét ▲AIF và ▲AIE có:
\(\widehat{FAI}=\stackrel\frown{EAI}\) (AI là đường phân giác của \(\widehat{FAE}\) )
AF=AE (gt)
AI là cạnh chung.
=>▲AIF = ▲AIE (c-g-c)
=>\(\widehat{AFI}=\widehat{AEI}\) (2 góc tương ứng)
Mà\(\widehat{AEI}=90^0\)(BE⊥AC tại E)
=>\(\widehat{AFI}=90^0\) hay IF⊥AB tại F.
c) Xét ▲ABC có:
AD là đường cao (AD⊥BC tại I)
BE là đường cao (BE⊥AC tại E)
AD cắt BE tại I (gt)
=> I là trực tâm của ▲ABC.
=>CI⊥AB mà IF⊥AB (cmt)
=>CI trùng với IF hay C,I,F thẳng hàng.
Thanks