K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đường tròn d: Đường tròn qua D_1 với tâm O' Đoạn thẳng k: Đoạn thẳng [O, K] Đoạn thẳng l: Đoạn thẳng [O', K] Đoạn thẳng m: Đoạn thẳng [C, A] Đoạn thẳng n: Đoạn thẳng [D, A] Đoạn thẳng p: Đoạn thẳng [O, A] Đoạn thẳng q: Đoạn thẳng [O', A] Đoạn thẳng r: Đoạn thẳng [A, B] Đoạn thẳng s: Đoạn thẳng [B, K] Đoạn thẳng t: Đoạn thẳng [O, O'] Đoạn thẳng g_1: Đoạn thẳng [J, O] Đoạn thẳng h_1: Đoạn thẳng [J', O'] Đoạn thẳng i_1: Đoạn thẳng [J, J'] O = (-0.72, 4.26) O = (-0.72, 4.26) O = (-0.72, 4.26) O' = (4.64, 4.02) O' = (4.64, 4.02) O' = (4.64, 4.02) Điểm A: Giao điểm đường của c, d Điểm A: Giao điểm đường của c, d Điểm A: Giao điểm đường của c, d Điểm B: Giao điểm đường của c, d Điểm B: Giao điểm đường của c, d Điểm B: Giao điểm đường của c, d Điểm C: Giao điểm đường của c, f Điểm C: Giao điểm đường của c, f Điểm C: Giao điểm đường của c, f Điểm D: Giao điểm đường của d, g Điểm D: Giao điểm đường của d, g Điểm D: Giao điểm đường của d, g Điểm H: Giao điểm đường của f, h Điểm H: Giao điểm đường của f, h Điểm H: Giao điểm đường của f, h Điểm I: Giao điểm đường của g, j Điểm I: Giao điểm đường của g, j Điểm I: Giao điểm đường của g, j Điểm K: Giao điểm đường của h, j Điểm K: Giao điểm đường của h, j Điểm K: Giao điểm đường của h, j Điểm J: Giao điểm đường của c, e Điểm J: Giao điểm đường của c, e Điểm J: Giao điểm đường của c, e Điểm J': Giao điểm đường của d, f_1 Điểm J': Giao điểm đường của d, f_1 Điểm J': Giao điểm đường của d, f_1

a) Ta thấy \(\widehat{OAH}+\widehat{HAI}=\widehat{OAI}=90^o\) và \(\widehat{O'AI}+\widehat{IAH}=\widehat{O'AH}=90^o\)

nên \(\widehat{OAH}=\widehat{O'AI}\Rightarrow\widehat{AOH}=\widehat{AO'I}\left(1\right)\)

Ta thấy \(\widehat{OAO'}+\widehat{HAI}=\widehat{OAH}+\widehat{HAI}+\widehat{IAO'}+\widehat{HAI}=\widehat{OAI}+\widehat{HAO'}\)

\(=90^o+90^o=180^o\)

Xét tứ giác AHKI ta cũng có \(\widehat{HKI}+\widehat{HAI}=180^o\Rightarrow\widehat{HKI}=\widehat{OAO'}\left(2\right)\)

Từ (1) và (2) suy ra tứ giác OAO'K là hình bình hành (Có các góc đối bằng nhau)

b) Gọi AJ và AJ' là hai đường kính của đường tròn (O) và (O')

Trước hết, ta có J, B, J' thẳng hàng. Thật vậy: \(\widehat{ABJ}+\widehat{ABJ'}=90^o+90^o=180^o\)

Ta chứng minh J, K ,J' cũng thẳng hàng.

Xét tam giác AJJ' có O' là trung điểm AJ', O'K // AJ, O'K = 1/2AJ

Vậy nên K là trung điểm JJ'.

Tóm lại J, B, K ,J' thẳng hàng.Vậy thì \(\widehat{ABK}=\widehat{ABJ'}=90^o\) hay \(KB\perp BA\)

Hình vẽ như trên

a) Ta thấy ^OAH+^HAI=^OAI=90o và ^O'AI+^IAH=^O'AH=90o

nên ^OAH=^O'AI⇒^AOH=^AO'I(1)

Ta thấy ^OAO'+^HAI=^OAH+^HAI+^IAO'+^HAI=^OAI+^HAO'

=90o+90o=180o

Xét tứ giác AHKI ta cũng có ^HKI+^HAI=180o⇒^HKI=^OAO'(2)

Từ (1) và (2) suy ra tứ giác OAO'K là hình bình hành (Có các góc đối bằng nhau)

b) Gọi AJ và AJ' là hai đường kính của đường tròn (O) và (O')

Trước hết, ta có J, B, J' thẳng hàng. Thật vậy: ^ABJ+^ABJ'=90o+90o=180o

Ta chứng minh J, K ,J' cũng thẳng hàng.

Xét tam giác AJJ' có O' là trung điểm AJ', O'K // AJ, O'K = 1/2AJ

Vậy nên K là trung điểm JJ'.

\(\Rightarrow\) J, B, K ,J' thẳng hàng.Vậy thì ^ABK=^ABJ'=90o hay KB⊥BA

21 tháng 8 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi H là giao điểm của AB và OO’

Vì OO’ là đường trung trực của AB nên OO’ ⊥ AB tại H

Ta có: HA = HB

I là trung điểm của OO’ nên IH ⊥ AB     (1)

Trong tam giác ABK, ta có:

HA = HB (chứng minh trên)

IA = IK (tính chất đối xứng tâm)

Suy ra IH là đường trung bình của tam giác ABK

Suy ra IH // BK     (2)

Từ (1) và (2) suy ra: AB ⊥ KB

24 tháng 6 2017

Ví trí tương đối của hai đường tròn

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
20 tháng 12 2017

A B O C H D E F K M I J

Gọi giao điểm của AK và MB là I; giao điểm của IF với AB là J.

Xét tam giác vuông ICA ta thấy DA = DC nên DA = DC = DI.

Lại có DB là trung trực của AF nên DA = DF. Vậy thì DA = DF = DI hay tam giác IFA vuông tại F, suy ra DB // IJ.

Vậy thì DB là đường trung bình tam giác AIJ hay B là trung điểm AJ.

Ta có KF // AJ nên áp dụng Ta let ta có:

\(\frac{KM}{AB}=\frac{IM}{IB}=\frac{MF}{BJ}\)

Do AB = BJ nên KM = MF.