Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nghĩ cái này nó cũng tựa tựa như vậy,ko biết có dùng được không:V
\(P=\dfrac{3^{1111}-6^{1111}+9^{1111}-12^{1111}+15^{1111}-18^{1111}+21^{1111}-24^{1111}}{-1+2^{1111}-3^{1111}+4^{1111}-5^{1111}+6^{1111}-7^{1111}+8^{1111}}\)
\(\dfrac{P}{3^{1111}}=\dfrac{3^{1111}-6^{1111}+9^{1111}-12^{1111}+15^{1111}-18^{1111}+21^{1111}-24^{1111}}{3^{1111}\left(-1+2^{1111}-3^{1111}+4^{1111}-5^{1111}+6^{1111}-7^{1111}+8^{1111}\right)}\)
\(\dfrac{-P}{3^{1111}}=\dfrac{-3^{1111}+6^{1111}-9^{1111}+12^{1111}-15^{1111}+18^{1111}-21^{1111}+24^{1111}}{-3^{1111}+6^{1111}-9^{1111}+12^{1111}-15^{1111}+18^{1111}-21^{1111}+24^{1111}}=1\)
\(-P=1.3^{1111}=3^{1111}\Leftrightarrow P=-3^{1111}\)
\(P=\dfrac{3^{1111}-6^{1111}+9^{1111}-12^{1111}+15^{1111}-18^{1111}+21^{1111}-24^{1111}}{-1+2^{1111}-3^{1111}+4^{1111}-5^{1111}+6^{1111}-7^{1111}+8^{1111}}\)
\(P=\dfrac{3^{1111}\left(1-2^{1111}+3^{1111}-4^{1111}+5^{1111}-6^{1111}+7^{1111}-8^{1111}\right)}{-1\left(1-2^{1111}+3^{1111}-4^{1111}+5^{1111}-6^{1111}+7^{1111}-8^{1111}\right)}\)
\(P=\dfrac{3^{1111}}{-1}=-3^{1111}\)
biết 1 cách :V thánh nào làm nốt cách kia đi ạ :V
Vì a=11111.....1111 có 31 chữ số.Mà cứ 3 chữ số 1 thì chia hết cho 3.
\(\Rightarrow\)11111...1111 chia 3 dư 1
Vì b=111....111 có 38 chữ số.Mà cứ 3 chữ số 1 thì chia hết cho 3
\(\Rightarrow\)b chia 3 dư 2
\(\Rightarrow\)a.b chia 3 dư 2
\(\Rightarrow\)a.b - 2 \(⋮3\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)
Ta có: \(\frac{1111.c-99.d}{9999.c-11.d}=\frac{11.\left(101.c-9.d\right)}{11.\left(909.c-d\right)}=\frac{101.c-9.d}{909.c-d}=\frac{101.dk-9.d}{909.dk-d}=\frac{d.\left(101k-9\right)}{d.\left(909k-1\right)}=\frac{101k-9}{909k-1}\left(1\right)\)
\(\frac{1111.a-99.b}{9999.a-11.b}=\frac{11.\left(101a-9b\right)}{11.\left(909a-b\right)}=\frac{101a-9b}{909a-b}=\frac{101.bk-9b}{909.bk-b}=\frac{b.\left(101k-9\right)}{b.\left(909k-1\right)}=\frac{101k-9}{909k-1}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{1111.c-99.d}{9999.c-11.d}=\frac{1111.a-99.b}{9999.a-11.b}\left(đpcm\right)\)
Đặt \(k=\frac{a}{b}=\frac{c}{d}\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)
=> \(\frac{1111c-99d}{9999c-11d}=\frac{1111kd-99d}{9999kd-11d}=\frac{d\left(1111k-99\right)}{d\left(9999k-11\right)}=\frac{1111k-99}{9999k-11}\left(1\right)\)
\(\frac{1111a-99b}{9999a-11b}=\frac{1111kb-99b}{9999kb-11b}=\frac{b\left(1111k-99\right)}{b\left(9999k-11\right)}=\frac{1111k-99}{9999k-11}\left(2\right)\)
Từ (1) và (2) => \(\frac{1111c-99d}{9999c-11d}=\frac{1111a-99b}{9999a-11b}\)
Ta có : 66661111 = ....6
11111111 = ....1
665555 = ...6
=> Chữ số hàng đơn vị của A là :
A = 66661111 + 11111111 + 665555 = ....6 + ....1 + ....6 = ....3
\(A=6666^{1111}+1111^{1111}+66^{5555}\)
\(6666^{1111}\)có tận cùng là 6
\(1111^{1111}\)có tận cùng là 1
\(66^{5555}\)có tận cùng là 6
\(\Rightarrow6666^{1111}+1111^{1111}+66^{5555}\)có tận cùng là 3
\(\Rightarrow A=6666^{1111}+1111^{1111}+66^{5555}\)có chữ số hàng đơn vị là 3
Chúc bạn học tốt!