K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2018

2014+20142+....+20142015 = ( 2014 + 20142 ) + ... ( 20142014 + 20142015 )

= 2014.( 1 + 2014 ) + ... + 20142014.( 1 + 2014 )

= 2015.( 2014 + ..... + 20142014 ) chia hết cho 2015

15 tháng 12 2017

Cho mình hỏi bài này là chứng minh à

15 tháng 12 2017

( n+ 2014 ) và ( n+2015 ) là hai số liên tiếp nên ta luôn có 1 trong 2 số là số chẵn mà số chẵn thì chia hết cho 2

Suy ra tích hai số luôn chia hết cho 2 với mọi n thuộc Z hoặc n thuộc N

14 tháng 7 2018

Đặt  \(A=\left(n+2014^{2015}\right)\left(n+2015^{2014}\right)\)

  •   \(n=2k\)thì:  \(n+2014^{2015}=2k+2014^{2015}\)\(⋮\)\(2\) \(\Rightarrow\)\(A⋮2\)
  •  \(n=2k+1\)

Ta có:    \(n=2k+1\equiv1\left(mod2\right)\)

             \(2015^{2014}\equiv1\left(mod2\right)\)

\(\Rightarrow\)\(n+2015^{2014}\)\(⋮2\)\(\Rightarrow\)\(A⋮2\)

Vậy  

1 tháng 9 2016

A = (n + 2015)(n + 2016) + n2 + n

(n + 2015)(n + 2015 + 1) + n(n + 1)

Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2

=> (n + 2015)(n + 2015 + 1) chia hết cho 2

      n(n + 1) chia hết cho 2

=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2

=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)

19 tháng 2 2020

Bài giải

Ta có: C = 2014 + 20142 + 20143 +...+ 20142018 

=> C = (2014.1 + 2014.2014) + (20142.1 + 20142.2014) +

(20143.1 + 20143.2014) +...+

(20142017.1 + 20142017.2018)

=> C = 2014.(2014 + 1) + 20143.(2014 + 1) +...+ 20142017.(2014 + 1)

=> C = (2014 + 20143 +...+ 20142017).(2014 + 1)

=> C = 2015.(2014 + 20143 +...+ 20142017

Vì 2015."viết lại" \(⋮\)2015

Nên C \(⋮\)2015

Vậy...

23 tháng 3 2017

bài này = -1 nha bạn k cho mình nha

14 tháng 12 2015

Á chà chà! Biết rồi nhá! Mách thầy!

Hi hi! Ta cũng hỏi!

14 tháng 12 2015

ai có lòng nhân từ **** cho vài cái

10 tháng 10 2016

A = 2014+2014^2+2014^3++2014^4+...+2014^100

2014 . A = 20142 + 20143 + 20144 + 20145 + ... + 2014101

2014 . A - A = (  20142 + 20143 + 20144 + 20145 + ... + 2014101 ) - ( 2014 + 20142 + 20143 + 20144 + ... + 2014100 )

2013 . A = 2014101 - 2014

A = ( 2014101  - 2014 ) : 2013

10 tháng 10 2016

Ta có:

A = 2014 + 20142 + 20143 + 20144 + ... + 2014100

2014A = 20142 + 20143 + 20144 + 20145 + ... + 2014101

2014A - A = (20142 + 20143 + 20144 + 20145 + ... + 2014101) - (2014 + 20142 + 20143 + 20144 + ... + 2014100)

2013A = 2014101 - 2014

A = \(\frac{2014^{101}-2014}{2013}\)

18 tháng 6 2015

a)2014 + 2014^2 + 2014^3 + ... + 2014^10

=(2014+2014^2)+(2014^3+2014^4)+...+(2014^9+2014^10)

=2014(1+2014)+2014^3(1+2014)+...+1014^9(1+2014)

=2014.2015+2014^3.2015+...+2014^9.2015

vì 2014.2015 chia hết cho 2015

2014^3.2015 chia hết cho 2015

.....

2014^9.2015 chia hết cho 2015

=>2014.2015+2014^3.2015+...+2014^9.2015 chia hết cho 2015

vậy 2014 + 2014^2 + 2014^3 + ... + 2014^10 chia hết cho 2015 

18 tháng 6 2015

a,2014+20142+20143+....+201410

=(2014+20142)+(20143+20144)+.....+(20149+201410)

=2014.(1+2014)+20143.(1+2014)+.........+20149.(1+2014)

=2014.2015+20143.2015+..........+20149.2015

=2015.(2014+20143+...........+20149\(^._:\)2015 (đpcm)

b,4n+1\(^._:\)n+1

4n+4 -3\(^._:\)n+1

Vì 4n+4\(^._:\)n+1 =>3\(^._:\)n+1

=>n+1\(\in\){1; -1; 3; -3}

n+1n
10
-1-2
32
-3-4

KL: n\(\in\){0; 2; -2; -4}