Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=2x^2-6x=2\left(x^2-3x\right)=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)
\(=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Dấu "=" xảy ra \(< =>\left(x-\frac{3}{2}\right)^2=0< =>x=\frac{3}{2}\)
Vậy MInQ=-9/2 khi x=3/2
\(M=x^2+y^2-x+6y+10=x^2+y^2-x+6y+1+9=\left(x^2-x+1\right)+\left(y^2+6y+9\right)\)
\(=\left[\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}\right]+\left(y^2+2.y.3+9\right)=\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]+\left(y+3\right)^2=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra \(< =>\left(x-\frac{1}{2}\right)^2=0=>x=\frac{1}{2}\)
và \(\left(y+3\right)^2=0=>y=-3\)
Vậy minM=3/4 khi x=1/2 và y=-3
\(a,P=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Dấu \("="\Leftrightarrow x=1\)
\(b,Q=2x^2-6x=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{9}{4}\right)=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
Dấu \("="\Leftrightarrow x=\dfrac{3}{2}\)
\(c,M=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
a: Ta có: \(P=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
Q = 2x2 - 6x
= 2 ( x2 - 3x + 9/4 ) - 9/2
= 2 ( x - 3/2)2 - 9/2
+) Ta có: 2( x - 3/2)2 \(\ge\) 0
=> 2(x - 3/2)2 - 9/2 \(\ge\) -9/2
Vậy GTNN của Q = -9/2 khi x = 3/2
^^
a) \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
Vì \(\left(x-1\right)^2\ge0\) nên \(\left(x-1\right)^2+4\ge4\)
Vậy GTNN của P là 4 khi x = 1
b) \(Q=2x^2-6x=2x^2-6x+4,5-4,5=2.\left(x^2-3x+2,25\right)-4,5=2.\left(x-1,5\right)^2-4,5\)
Vì \(2.\left(x-1,5\right)^2\ge0\) nên \(2.\left(x-1,5\right)^2-4,5\ge-4,5\)
Vậy GTNN của Q là -4,5 khi x = 1,5
c) \(M=x^2+y^2-x+6y+10=\left(x^2-x+0,25\right)+\left(y^2+6y+9\right)+0,75\)
\(=\left(x-0,5\right)^2+\left(y+3\right)^2+0,75\)
Vì \(\left(x-0,5\right)^2\ge0\) và \(\left(y+3\right)^2\ge0\) nên \(\left(x-0,5\right)^2+\left(y+3\right)^2+0,75\ge0,75\)
Vậy GTNN của M là 0,75 khi x = 0,5 và y = -3
Ta có : P = x2 - 2x + 5
= x2 - 2x + 1 + 4
= (x - 1)2 + 4
Mà : (x - 1)2 \(\ge0\forall x\)
Nên : (x - 1)2 + 4 \(\ge4\forall x\)
Vậy GTNN của biểu thức là : 4 khi x = 1
x^2 -6x +10 = x^2 -2.x.3 +3^2 +1 = (x-3)^2 +1
Ma (x-3)^2 >=0 <=> (x-3)^2 +1 >=1>0 (voi moi x)
b) 4x - x^2 -5 = -(x^2 -4x +5) =-[(x^2 -4x +4)+1] = -[(x-2)^2 +1]
Ma (x+2)^2 >=0 <=> (x-2)^2 +1 >=1 <=> -[(x-2)^2 +1] <=-1 => -[(x-2)^2 +1] <0
2) a) P= x^2 -2x +5 = x^2 -2x +1 +4 = (x-1)^2 +4
Ta co: (x-1)^2 >=0 <=> (x-1)^2 +4 >=4
Vay gia tri nho nhat P=4 khi x=1
b) Q= 2x^2 -6x = 2(x^2 -3x) = 2(x^2 - 2.x.3/2 + 9/4 -9/4)= 2[(x-3/2)^2 -9/4]
Ta co: (x-3/2)^2 >=0 <=>(x-3/2)^2 -9/4 >= -9/4 <=> 2[(x-3/2)^2 -9/4] >= -9/2
Vay gia tri nho nhat Q= -9/2 khi x= 3/2
c) M= x^2 +y^2 -x +6y +10 = (x^2 -2.x.1/2 + 1/4) +(y^2 +2.y.3+9)+3/4
= ( x-1/2)^2 + (y+3)^2 +3/4
M>= 3/4
Vay GTNN cua M = 3/4 khi x=1/2 va y=-3
3)a) A= 4x - x^2 +3 = -(x^2 -4x -3) = -( x^2 -4x+4 -7) =-[(x-2)^2 -7]
Ta co: (x-2)^2>=0 <=> (x-2)^2 -7 >=-7 <=> -[(x-2)^2 -7] <=7
Vay GTLN A=7 khi x=2
b) B= x-x^2 = -(x^2 -2.x.1/2+1/4-1/4) = -[(x-1/2)^2 -1/4]
GTLN B= 1/4 khi x=1/2
c) N= 2x - 2x^2 -5 =-2( x^2 -x+5/2) = -2(x^2 - 2.x.1/2 +1/4 +9/4)
= -2[(x-1/2)^2 +9/4]
GTLN N= -9/2 khi x=1/2
b) Q = 2x2 - 6x => 2Q = 4x2 - 12x => 2Q = (2x)2 - 2 . 2 . 3x + 9 - 9 => 2Q = (2x - 3)2 - 9 \(\ge\)-9 <=> Q \(\ge\)-4,5
Đẳng thức xày ra khi: (2x - 3)2 = 0 => x = 1,5
Vậy giá trị nhỏ nhất của Q là -4,5 khi x = 1,5
c) M = x2 + y2 - x + 6y + 10 => M = x2 + y2 - x + 6y + 0,25 + 9 + 0,75
=> M = (x2 - x + 0,25) + (y2 + 6y + 9) + 0,75
=> M = (x - 0,5)2 + (y + 3)2 + 0,75\(\ge\)0,75
Đẳng thức xảy ra khi: (x - 0,5)2 = 0 và (y + 3)2 = 0 <=> x = 0,5 và y = -3
Vậy giá trị nhỏ nhất của M là 0,75 khi x = 0,5 và y = -3