K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2018

\(P=\left(12-6\sqrt{3}\right)\sqrt{\dfrac{3}{14-8\sqrt{3}}}-3\sqrt{2\left(1-\sqrt{-2\sqrt{3}+4}\right)+2\sqrt{4+2\sqrt{3}}}=\left(12-6\sqrt{3}\right)\sqrt{\dfrac{3\left(14+8\sqrt{3}\right)}{\left(14-8\sqrt{3}\right)\left(14+8\sqrt{3}\right)}}-3\sqrt{2\left(1-\sqrt{3-2\sqrt{3}+1}\right)+2\sqrt{3+2\sqrt{3}+1}}\)\(=\left(12-6\sqrt{3}\right)\sqrt{\dfrac{42+24\sqrt{3}}{4}}-3\sqrt{2\left(1-\sqrt{\left(\sqrt{3}-1\right)^2}\right)+2\sqrt{\left(\sqrt{3}+1\right)^2}}=\dfrac{6\sqrt{\left(2-\sqrt{3}\right)^2\left(42+24\sqrt{3}\right)}}{2}-3\sqrt{2\left(1-\sqrt{3}+1\right)+2\left(\sqrt{3}+1\right)}=3\sqrt{\left(7-4\sqrt{3}\right)\left(42+24\sqrt{3}\right)}-3\sqrt{2-2\sqrt{3}+2+2\sqrt{3}+2}=3\sqrt{294+168\sqrt{3}-168\sqrt{3}-288}-3\sqrt{6}=3\sqrt{6}-3\sqrt{6}=0\)

17 tháng 6 2017

câu đầu bạn xem lại đề đi nha 

các phần còn lại

b)B=\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)=\(\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)=\(\sqrt{7}-1-\left(\sqrt{7}+1\right)=-2\)

c)tính từng căn nha

\(\sqrt{13-4\sqrt{3}}=\sqrt{12-2\sqrt{12}+1}=\sqrt{\left(\sqrt{12}-1\right)^2}=\sqrt{12}-1=2\sqrt{3}-1\)

\(\sqrt{22-12\sqrt{2}}=\sqrt{18-4\sqrt{18}+4}=\sqrt{\left(\sqrt{18}-2\right)^2}=\sqrt{18}-2=3\sqrt{2}-3\)

\(\sqrt{\left(2\sqrt{3}-3\sqrt{2}\right)^2}=3\sqrt{2}-2\sqrt{3}\)

thay vào tính C đc C=2

d)có \(\sqrt{9+4\sqrt{2}}=\sqrt{8+2\sqrt{8}+1}=\sqrt{\left(\sqrt{8}+1\right)^2}=\sqrt{8}+1\)\(\Rightarrow6\sqrt{2+\sqrt{9+4\sqrt{2}}}=6\sqrt{2+\sqrt{8}+1}=6\sqrt{2+2\sqrt{2}+1}\)

=\(6\sqrt{\left(\sqrt{2}+1\right)^2}=6\left(\sqrt{2}+1\right)=6\sqrt{2}+6\)\(\Rightarrow D=\sqrt{17-6\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{17-6\sqrt{2}-6}=\sqrt{11-6\sqrt{2}}=\sqrt{9-6\sqrt{2}+2}\)

=\(\sqrt{\left(3-\sqrt{2}\right)^2}=3-\sqrt{2}\)

29 tháng 7 2020

\(A=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

4 tháng 4 2022

\(a,\)

\(=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right):\left(\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right):\left(\dfrac{3}{3\sqrt{x}+1}\right)\)

\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(=\dfrac{3\sqrt{x}+3x}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(=\dfrac{3\sqrt{x}+1}{3\sqrt{x}-1}\)

Vậy \(P=\dfrac{3\sqrt{x}+1}{3\sqrt{x}-1}\)

\(b,\)Thay \(P=\dfrac{6}{5}\) vào pt, ta có :

\(\dfrac{3\sqrt{x}+1}{3\sqrt{x}-1}=\dfrac{6}{5}\)

\(\Leftrightarrow5\left(3\sqrt{x}+1\right)=6\left(3\sqrt{x}-1\right)\)

\(\Leftrightarrow15\sqrt{x}+5-18\sqrt{x}+6=0\)

\(\Leftrightarrow-3\sqrt{x}+11=0\)

\(\Leftrightarrow-3\sqrt{x}=-11\)

\(\Leftrightarrow\sqrt{x}=\dfrac{11}{3}\)

\(\Leftrightarrow x=\left(\dfrac{11}{3}\right)^2\)

\(\Leftrightarrow x=\dfrac{121}{9}\)

Vậy \(x=\dfrac{121}{9}\) thì \(P=\dfrac{6}{5}\)

 

 

7 tháng 9 2020

\(A=\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(\sqrt{2}-1\right)^2}\)

\(=\sqrt{2}+1+\sqrt{2}-1=2\sqrt{2}\)

\(B=\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\frac{\sqrt{3}.\sqrt{5}-\sqrt{2}.\sqrt{3}}{\sqrt{5}.\sqrt{7}-\sqrt{2}.\sqrt{7}}=\frac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\frac{\sqrt{3}}{\sqrt{7}}=\sqrt{\frac{3}{7}}\)

\(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)

\(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)

\(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{3}-1}}\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{2-\sqrt{3}}}\)

\(C=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(C=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(C=\sqrt{6+2.\left(\sqrt{3}-1\right)}\)

\(C=\sqrt{6+2\sqrt{3}-2}\)

\(C=\sqrt{4+2\sqrt{3}}\)

\(C=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

7 tháng 9 2020

1) Ta có: \(\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}\)

         \(=\sqrt{2+2\sqrt{2}+1}+\sqrt{2-2\sqrt{2}+1}\)

         \(=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(\sqrt{2}-1\right)^2}\)

         \(=\sqrt{2}+1+\sqrt{2}-1\)

         \(=2\sqrt{2}\approx2,82843\)

2) Ta có: \(B=\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)

        \(\Leftrightarrow B=\frac{\sqrt{5}.\sqrt{3}-\sqrt{2}.\sqrt{3}}{\sqrt{5}.\sqrt{7}-\sqrt{2}.\sqrt{7}}\)

        \(\Leftrightarrow B=\frac{\sqrt{3}.\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}.\left(\sqrt{5}-\sqrt{2}\right)}\)

        \(\Leftrightarrow B=\frac{\sqrt{3}}{\sqrt{7}}\approx0,65465\)

3) Ta có: \(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)

        \(\Leftrightarrow C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{3+2\sqrt{3}+1}}}\)

        \(\Leftrightarrow C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)

        \(\Leftrightarrow C=\sqrt{6+\sqrt{8}.\sqrt{3-\sqrt{3}-1}}\)

        \(\Leftrightarrow C=\sqrt{6+\sqrt{2.8-2.2.\sqrt{3}.2}}\)

        \(\Leftrightarrow C=\sqrt{6+\sqrt{12-2.\sqrt{4.3}.2+1}}\)

        \(\Leftrightarrow C=\sqrt{6+\sqrt{12-2.\sqrt{12}.2+4}}\)

        \(\Leftrightarrow C=\sqrt{6+\sqrt{\left(\sqrt{12}-2\right)^2}}\)

        \(\Leftrightarrow C=\sqrt{6+\sqrt{12}-2}\)

        \(\Leftrightarrow C=\sqrt{3+2\sqrt{3}+1}\)

        \(\Leftrightarrow C=\sqrt{\left(\sqrt{3}+1\right)^2}\)

        \(\Leftrightarrow C=\sqrt{3}+1\approx2,73205\)

6 tháng 7 2017

a,\(\left(\sqrt{3}-\sqrt{2}\right)+\sqrt{2}=\sqrt{3}\) (vi \(\sqrt{3}>\sqrt{2}\) )

b,\(3\sqrt{5}-\left(\sqrt{5}-1\right)\) =\(3\sqrt{5}-\sqrt{5}+1=2\sqrt{5}+1\)  

c,\(\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

6 tháng 7 2017

Bạn ỏi, bài này mk làm đc rồi nhé ^^. Bạn có cần trợ giúp hông ??? Rất sẵn lòng :)

31 tháng 8 2021

\(A=3\sqrt{2}+5\sqrt{8}-2\sqrt{50}\)

\(=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}\)

\(=3\sqrt{2}\)

31 tháng 8 2021

\(B=\dfrac{1}{3+\sqrt{5}}+\dfrac{1}{3-\sqrt{5}}\)

\(=\dfrac{3-\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}+\dfrac{3+\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)

\(=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{9-5}\)

\(=\dfrac{3}{2}\)

17 tháng 8 2020

\(C=\sqrt{4-2\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)

\(\Leftrightarrow C=\sqrt{3-2\sqrt{3}+1}-\sqrt{4+4\sqrt{3}+3}\)

\(\Leftrightarrow C=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(\Leftrightarrow C=\left|\sqrt{3}-1\right|-\left|2+\sqrt{3}\right|\)

\(\Leftrightarrow C=\sqrt{3}-1-2-\sqrt{3}\)

\(\Leftrightarrow C=-3\)

30 tháng 8 2018

a) \(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}=\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\frac{1}{\sqrt{2}}\)

b) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)