Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
. . A B O H C D I
a) Vì AD là tiếp tuyến của (O)
=> \(AD\perp AB\)
=> \(\widehat{DAB}=90^o\)
CÓ: OA=OB=OC(=R)
=> CO là tiếp tuyến của ΔABC
Mà: \(CO=\frac{1}{1}AB\left(cmt\right)\)
=> ΔABC vuông tại C
=> \(AC\perp BC\)
Xét ΔABD vuông tại A(cmt), mà AC là đường cao(cmt)
=> \(BC\cdot BD=AB^2\) ( theo hệ thức trong tam giác vuông)
=> \(BC\cdot BD=\left(2\cdot OB\right)^2=4R^2\)
b) Có: OA=OC(cmt)
=> ΔOAC cân tại O
=> \(\widehat{ACO}=\widehat{CAO}\)
Xét ΔACD vuông tại C(cmt)
mà: CI là tiếp tuyến ứng vs cạnh AD
=> IC=IA
=> ΔIAC cân tại I
=> \(\widehat{IAC}=\widehat{ICA}\)
Có: \(\widehat{IAC}+\widehat{CAO}=\widehat{DAB}=90^o\)
=> \(\widehat{ICA}+\widehat{ACO}=90^o\)
Hay: \(\widehat{ICO}=90^o\)
=> IC là tiếp tuyến của (O)
Phần c đề sai
đây là bài lớp 10 chứ nhỉ
ta có \(AC=20\times2=40\text{ hải lí}\), \(AB=15\times2=30\text{ hải lí}\)
áp dụng định lý cosin ta có :
\(BC=\sqrt{AB^2+AC^2-2AB.AC\text{c}osA}=\sqrt{40^2+30^2-2\times30\times40\times cos60^o}\simeq36.06\text{ hải lí}\)
a) Xét tứ giác ADHE có: \(\widehat{ADH}=90\)
\(\widehat{DAE}=90\)
\(\widehat{AEH}=90\)
=> Tứ giác ADHE là hình chữ nhật
=>DE=AH
Áp dụng hệ thức liên quan tới đường cao ta có:
\(AH^2=HB\cdot HC=2\cdot8=16\)
=>AH=4
=>DE=AH=4
b)Gọi O là giao điểm của AH và DE
Vì ADHE là hình chữ nhật
=>OD=OA
=>ΔOAD cân tại O
=>\(\widehat{OAD}=\widehat{ODA}\)
Xét ΔABH vuông tại H(gt)
=>\(\widehat{BAH}+\widehat{B}=90\) (1)
Xét ΔABC vuông tại A(gt)
=>\(\widehat{B}+\widehat{C}=90\) (2)
Từ (1) (2) suy ra: \(\widehat{BAH}=\widehat{C}\)
Mà: \(\widehat{OAD}=\widehat{ODA}\) (cmt)
=> \(\widehat{ADE}=\widehat{ACB}\)
Xét ΔADE và ΔACB có
\(\widehat{DAE}=\widehat{CAB}=90\left(gt\right)\)
\(\widehat{ADE}=\widehat{ACB}\left(cmt\right)\)
=>ΔADE~ΔACB
pn ơi pn xem lại đề câu c có đúng k pn