Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x+1}{2}+\dfrac{3x-2}{3}=\dfrac{x-7}{12}\)
\(\Leftrightarrow\dfrac{6\left(x+1\right)+4\left(3x-2\right)}{12}=\dfrac{x-7}{12}\)
\(\Leftrightarrow6\left(x+1\right)+4\left(3x-2\right)=x-7\)
\(\Leftrightarrow6x+6+12x-8=x-7\)
\(\Leftrightarrow6x+12x-x=-7-6+8\)
\(\Leftrightarrow17x=-5\)
\(\Leftrightarrow x=\dfrac{-5}{17}\)
Vậy .........................
b) \(\dfrac{2x}{x-3}-\dfrac{5}{x+3}=\dfrac{x^2+21}{x^2-9}\left(ĐKXĐ:x\ne\pm3\right)\)
\(\Leftrightarrow\dfrac{2x\left(x+3\right)-5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+21}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow2x\left(x+3\right)-5\left(x-3\right)=x^2+21\)
\(\Leftrightarrow2x^2+6x-5x+15=x^2+21\)
\(\Leftrightarrow2x^2-x^2+x+15-21=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2-2x+3x-6=0\)
\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(n\right)\\x=-3\left(l\right)\end{matrix}\right.\)
Vậy \(S=\left\{2\right\}\)
d) \(\left(x-4\right)\left(7x-3\right)-x^2+16=0\)
\(\Leftrightarrow\left(x-4\right)\left(7x-3\right)-\left(x^2-16\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(7x-3\right)-\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(7x-3-x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(6x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\6x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{6}\end{matrix}\right.\)
Vậy .........................
P/s: các câu còn lại tương tự, bn tự giải nha
a) Đk : \(x\ne0;\ne1\)
\(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=\dfrac{2\left(x^2+x-1\right)}{x\left(x+1\right)}\)
\(\Rightarrow\dfrac{x^2+3x}{x\left(x+1\right)}+\dfrac{x^2-x-2}{x\left(x+1\right)}-\dfrac{2x^2+2x-2}{x\left(x+1\right)}=0\)
\(\Rightarrow\dfrac{x^2+3x+x^2-x-2-2x^2-2x+2}{x\left(x-1\right)}=0\)
\(\Rightarrow\dfrac{0}{x-1}=0\)
=> Phương trình có vô số nghiệm x
b) Đk : \(x\ne2;x\ne3\)
\(\dfrac{2}{x-2}-\dfrac{x}{x+3}=\dfrac{5x}{\left(x-2\right)\left(x+3\right)}-1\)
\(\Rightarrow\dfrac{2x+6}{\left(x-2\right)\left(x+3\right)}-\dfrac{x^2-2x}{\left(x-2\right)\left(x+3\right)}-\dfrac{5x}{\left(x-2\right)\left(x+3\right)}+\dfrac{x^2+x-6}{\left(x-2\right)\left(x+3\right)}\)
=0
\(\Rightarrow\dfrac{2x+6-x^2+2x-5x+x^2+x+6}{\left(x-2\right)\left(x+3\right)}=0\)
\(\Rightarrow\dfrac{12}{\left(x-2\right)\left(x+3\right)}=0\)
=> Phương trình vô nghiệm
c)
\(\Leftrightarrow\dfrac{x^2-x+1}{x^4+x^2+1}-\dfrac{x^2+x+1}{x^4+x^2+1}-\dfrac{1-2x}{x^4+x^2+1}=0\)
\(\Rightarrow\dfrac{x^2-x+1-x^2-x-1-1+2x}{x^4+x^2+1}=0\)
\(\Rightarrow\dfrac{-1}{x^4+x^2+1}=0\)
=> PTVN
d) Thôi tự làm đi, câu này dễ :Vvv
e)
\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)\)=40
\(\Rightarrow\left[\left(x+1\right)\left(x+5\right)\right]\cdot\left[\left(x+2\right)\left(x+4\right)\right]=40\)
\(\Rightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=40\)
Đặt
\(x^2+6x+7=t\)
Phương trình tương đương
\(\left(t-1\right)\left(t+1\right)=40\)
\(t^2=41\)
\(\)\(t=\pm\sqrt{41}\)
Thay vào tìm x.
a) \(\frac{2x+1}{x-1}\)=\(\frac{5\left(x-1\right)}{x+1}\):dkxd x\(\ne\)\(\pm\)1
\(\Rightarrow\)(2x+1)(x+1)=5(x-1)2
\(\Leftrightarrow\)2x2+2x+x+1=5(x2-2x+1)
\(\Leftrightarrow\)2x2+2x+x+1=5x2-10x+5
\(\Leftrightarrow\)2x2+2x+x+1-5x2+10x-5=0
\(\Leftrightarrow\)-3x2+13x-4=0
\(\Leftrightarrow\)-3x2+12x+1x-4=0
\(\Leftrightarrow\)-4x(x-4)+(x-4)=0
\(\Leftrightarrow\)(x-4)(-4x+1)=0
\(\Leftrightarrow\)x-4=0 hoac -4x+1=0
\(\Leftrightarrow\)x=4(tmdkxd) \(\Leftrightarrow\)x=1/4(tmdkxd)
vay s={4;1/4}
b)\(\frac{x}{x-1}\)-\(\frac{2x}{x^{ }2^{ }-1}\)=0 dkxd x\(\ne\)\(\pm\)1
\(\Leftrightarrow\)\(\frac{x\left(X+1\right)-2x^{ }}{\left(x-1\right)\left(x+1\right)}\)=0
\(\Rightarrow\)x2+x-2x=0
\(\Leftrightarrow\)x2-x=0
\(\Leftrightarrow\)x(x-1)=0
\(\Leftrightarrow\)x=0 hoac x-1=0
\(\Leftrightarrow\)x=0(tmdkxd)\(\Leftrightarrow\)x=1(ktmdkxd)
vay s={0}
c.\(\frac{1}{x-2}\)+3=\(\frac{x-3}{2-x}\) dkxd x\(\ne\)2
\(\Leftrightarrow\)\(\frac{1}{x-2}\)+3=\(\frac{-\left(x-3\right)}{x-2}\)
\(\Leftrightarrow\)\(\frac{1+3\left(x-2\right)}{x-2}\)=\(\frac{-x+3}{x-2}\)
\(\Rightarrow\)1+3x-6=-x+3
\(\Leftrightarrow\)4x=8
\(\Leftrightarrow\)x=2(ktmdkxd)
vay s=\(\varnothing\)
chuc ban hoc tot
a.\(\frac{2x+1}{x-1}\) = \(\frac{5\left(x-1\right)}{x+1}\)
\(\leftrightarrow\) 2x+1 = 5x - 5
\(\leftrightarrow\) 2x - 5= -1-5
\(\leftrightarrow\) -3x = -6
\(\leftrightarrow\) x =2
Vậy S=\(\left\{2\right\}\)
b.\(\frac{x}{x-1}\) - \(\frac{2x}{x^2-1}\) =0
\(\leftrightarrow\) \(\frac{x}{x-1}\) - \(\frac{2x}{\left(x-1\left(x+1\right)\right)}\)= 0 (ĐK : x\(_{\ne}\) -1 và 1)
\(\leftrightarrow\)\(\frac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\) - \(\frac{2x}{\left(x-1\left(x+1\right)\right)}\) =0
\(\leftrightarrow\) x2 + x -2x = 0
\(\leftrightarrow\)(x2 + x) -2x =0
\(\leftrightarrow\)x(x+1) -2x =0
\(\leftrightarrow\) x =0 -> x=0
x+1 =0 -> x = -1(Loại)
-2x = 0 -> x= 2(TM)
Vậy x =\(\left\{0,2\right\}\)
(BẠN NHỚ COI LẠI CÁI CÂU TRẢ LỜI Ở CUỐI MỖI BÀI NHA ,MÌNH KO CHẮC CÂU TRẢ LỜI ĐÓ )
a.x-\(\dfrac{5x+2}{6}=\dfrac{7-3x}{4}\)
⇔\(x=\dfrac{7-3x}{4}+\dfrac{5x+2}{6}\)
⇔\(x=\dfrac{21-9x+10x+4}{12}\)
⇔x=\(\dfrac{x+25}{12}\)
⇔12x=x+25
⇔x=\(\dfrac{25}{11}\)
Vậy pt đã cho có n0 là S=\(\left\{\dfrac{25}{11}\right\}\)
b.ĐKXĐ:x≠-2;x≠2
\(\dfrac{x-2}{x+2}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{x^2-4}\)
⇔\(\dfrac{\left(x-2\right)\cdot\left(x-2\right)-3\cdot\left(x+2\right)}{\left(x-2\right)\cdot\left(x+2\right)}\)=\(\dfrac{2x-22}{\left(x-2\right)\cdot\left(x+2\right)}\)
⇔\(\dfrac{x^2-7x-2}{\left(x-2\right)\cdot\left(x+2\right)}=\dfrac{2x-22}{\left(x-2\right)\cdot\left(x+2\right)}\)
⇒\(\left(x^2-7x-2\right)\cdot\left(x-2\right)\cdot\left(x+2\right)=\left(2x-22\right)\cdot\left(x-2\right)\cdot\left(x+2\right)\)
⇔x2-7x-2=2x-22
⇔x2-9x+20=0
⇔(x-4)(x-5)=0
⇔\(\left\{{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
Vậy pt đã cho có n0 là S={4;5}
Sửa đề:
\(Q=1+\left(\dfrac{x+1}{x^3+1}-\dfrac{1}{x^2-x+1}-\dfrac{2}{x+1}\right):\dfrac{x^3-2x^2}{x^3-x^2+x}\)
\(=1+\left(\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right):\dfrac{x^2\left(x-2\right)}{x\left(x^2-x+1\right)}\)
\(=1+\dfrac{x+1-x-1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}:\dfrac{x^2\left(x-2\right)}{x\left(x^2-x+1\right)}\)
\(=1+\dfrac{-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}:\dfrac{x\left(x-2\right)}{x^2-x+1}\)
\(=1+\dfrac{-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\dfrac{x^2-x+1}{x\left(x-2\right)}\)
\(=1+\dfrac{-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-2x\right)}=\dfrac{\left(x+1\right)\left(x^2-2x\right)-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-2x\right)}\)
\(=\dfrac{x^3-2x^2+x^2-2x-2x^2+2x-2}{\left(x+1\right)\left(x^2-2x\right)}\)
\(=\dfrac{x^3-3x^2-2}{\left(x+1\right)\left(x^2-2x\right)}\)
a)\(\dfrac{2\left(2x-1\right)-\left(2x+1\right)+4}{4x^2-1}\)
\(=\dfrac{4x-2-2x-1+4}{4x^2-1}=\dfrac{2x+1}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{1}{2x-1}\)
câu b đề đúng ko vậy
\(a.\dfrac{2x-1}{x-1}+\dfrac{x}{x^2-3x+2}=\dfrac{6x-2}{x-2}\left(x\ne2;x\ne1\right)\)
\(\Leftrightarrow\dfrac{\left(2x-1\right)\left(x-2\right)+x}{\left(x-1\right)\left(x-2\right)}=\dfrac{\left(6x-2\right)\left(x-1\right)}{\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow2x^2-4x-x+2+x=6x^2-6x-2x+2\)
\(\Leftrightarrow2x^2-5x+2=6x^2-8x+2\)
\(\Leftrightarrow4x^2-3x=0\)
\(\Leftrightarrow x\left(4x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=\dfrac{3}{4}\left(TM\right)\end{matrix}\right.\)
KL........
\(b.A=\sqrt{x^2-x+1\dfrac{1}{4}}-2016=\sqrt{x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+1}-2016=\sqrt{\left(x-\dfrac{1}{2}\right)^2+1}-2016\ge1-2016=-2015\)
\(\Rightarrow A_{Min}=-2015."="\Leftrightarrow x=\dfrac{1}{2}\)
\(=\dfrac{2x^2-x-x-1+2-x^2}{x-1}=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\)