K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2018

Câu hỏi của Marklin_9301 - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

26 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của Marklin_9301 - Toán lớp 8 - Học toán với OnlineMath

6 tháng 7 2016

VÀO TRANG CÁ NHÂN MÌNH ĐI MÌNH ĐÃ TRẢ LỜI CÂU NÀY

29 tháng 3 2017

a) xét tam giác ACE và tam giác AKE có

góc ACE = góc AKE (=90 độ)

góc A1 = góc A2 (AE là tia phân giác của góc BAC)

AE chung

=> tam giác ACE = tam giác AKE (cạnh huyền góc nhọn)

=> AC = AK ( 2 cạnh tương ứng)

b) ta có: trong tam giác vuông BCA có góc B + góc A = 90 độ

=> góc B = 90 độ - góc A = 90 độ - 60 độ = 30 độ

Mà góc EAB = 30 độ

=> tam giác EBA cân tại E (định nghĩa tam giác cân)

Vì EK vuông góc với AB (gt)

nên EK cũng là đường trung trực của tam giác AEB.

=> KA = KB

26 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của Marklin_9301 - Toán lớp 8 - Học toán với OnlineMath

1 tháng 5 2021

mình gửi ảnh

17 tháng 7 2019

C A K B E D

Cm: a) Xét t/giác ACE và t/giác AKE

có: \(\widehat{ACE}=\widehat{AKE}=90^0\) (gt)

   AE : chung

 \(\widehat{CAE}=\widehat{KAE}\) (gt)

=> t/giác ACE = t/giác AKE (ch - gn)

=> AC = AK ; EC = EK (các cặp cạnh t/ứng)

Ta có: +) AC = AK (cmt) => A thuộc đường trung trực của CK

   +) EC = EK (cmt) => E thuộc đường trung trực của CK

Mà A \(\ne\)E => AE là đường trung trực của CK

=> AE \(\perp\)CK

b) Xét t/giác ABC có góc C = 900

=> \(\widehat{A}+\widehat{ABC}=90^0\)

=> \(\widehat{ABC}=90^0-\widehat{A}=90^0-60^0=30^0\)

Ta có: \(\widehat{CAE}=\widehat{EAB}=\frac{\widehat{A}}{2}=\frac{60^0}{2}=30^0\)

=> \(\widehat{EAB}=\widehat{ABE}=30^0\) => t/giác ABE cân tại E

=> AE = EB

=> AK = KB (quan hệ giữa đường xiên và hình chiếu)

(có thể xét qua 2 t/giác AEK và t/giác BEK)

c) Xét t/giác EKB có góc EKB = 90 độ

=> EB > KB (ch > cgv)

Mà KB = AK (Cmt); AK = AC (vì t/giác ACE = t/giác AKE)

=> EB > AC 

d) Ta có: AC \(\perp\)BC \(\equiv\)C

     KE\(\perp\)AB \(\equiv\)K

      BD \(\perp\)AD \(\equiv\)D

=> AC, BD. KE đi qua 1 điểm (t/c 3 đường cao)

17 tháng 7 2019

A B C E K D 1 2 1

a) Ta có : \(\widehat{BAC}=60^0\Rightarrow\widehat{A_1}=\widehat{A_2}=\widehat{B_1}=30^0.\)

\(\Delta ACE=\Delta AKE\left(CH-GN\right)\Rightarrow AC=AK\)=> \(\Delta ACK\)cân tại A => AE vừa là phân giác, vừa là trung tuyến => \(AE\perp CK\).

b) Từ câu a) => \(\Delta AEB\)cân tại E => AE = EB ; EK vừa là đường cao, vừa là trung tuyến => KA = KB.

c) Ta có AK \(\perp\)EK, theo quan hệ giũa đường vuông góc và đường xiên, ta có : AE > AK <=> AE > AC (vì AK = AC) <=> EB > AC (vì EB = AE).

d) Xét \(\Delta AEB\)có : \(BD\perp AE,AC\perp BE,EK\perp AB\)=> BD, AC, EK là ba đường cao của tam giác AEB => chúng đồng quy (theo tính chất ba đường cao trong tam giác).