K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

a) Ta có: Vì 225 là số lẻ nên (100a + 3b + 1) và (2^a + 10a + b) cũng nhận giá trị lẻ.

Th1: Nếu a \(\ne\)0 \(\Rightarrow\)2^a + 10a nhận giá trị chẵn với mọi a \(\Rightarrow\)b nhận giá trị lẻ.

\(\Rightarrow\)3b cũng nhận giá trị lẻ.

\(\Rightarrow\)100a + 3b + 1 nhận giá trị chẵn (vô lí)

Th2: Nếu a = 0 thì thay vào ta có:

(100 x 0 + 3b + 1)(2^0 + 10 x 0 + b) = 225

\(\Rightarrow\)(3b + 1) x (1 + b) = 225=225 . 1 = 75 x 3 = 45 x 5 = 25 x 9 = 15 x 15

Vì b là số tự nhiên nên 3b + 1> b + 1 và 3b + 1 chia 3 dư 1

Vậy 3b + 1= 25; b +1 = 9

Vậy a = 0; b= 8

10 tháng 4 2018

Sai rồi 100a chẵn, 3b lẻ cộng với 1 sẽ là chẵn suy ra 100a+3b+1 chẵn chứ . Bạn hoàng làm sai rồi

Câu 1: Tính: \(A=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{1\cdot2+2\cdot3+3\cdot4+...+2017\cdot2018}\)Câu 2: Cho: \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\) và \(B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)Câu 3: Chứng tỏ rằng: \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)Câu 4: Tìm các số tự nhiên a, b sao cho: \(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\)Câu 5:...
Đọc tiếp

Câu 1: Tính: \(A=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{1\cdot2+2\cdot3+3\cdot4+...+2017\cdot2018}\)

Câu 2: Cho: \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\) và \(B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)

Câu 3: Chứng tỏ rằng: \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)

Câu 4: Tìm các số tự nhiên a, b sao cho: \(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\)

Câu 5: Tính \(A=\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot\left(\frac{1}{4^2}-1\right)\cdot...\cdot\left(\frac{1}{100^2}-1\right)\)

Câu 6: Tìm số tự nhiên n để các phân số tối giản

 \(A=\frac{2n+3}{3n-1}\)\(B=\frac{3n+2}{7n+1}\)

Câu 7: So sánh: \(A=1\cdot3\cdot5\cdot7\cdot...\cdot99\) với \(B=\frac{51}{2}\cdot\frac{52}{2}\cdot\frac{53}{2}\cdot...\cdot\frac{100}{2}\)

Câu 8: Chứng tỏ rằng: 

a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}< 1\)

b) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

Câu 9: Cho \(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}\)

Chứng minh rằng: \(\frac{1}{3}< A< \frac{1}{2}\)

Câu 10: Chứng tỏ rằng: \(\frac{7}{12}< \frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}< 1\)

1
24 tháng 4 2018

Câu 8( Mình không viết đè nữa nha)

a)   2-1/1.2 + 3-2/2.3 + 4-3/3.4 +…..+ 100-99/99.100

=  1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 +…..+ 1/99 – 1/100

=  1 – 1/100 < 1

=   99/100 < 1

    Vậy A< 1

12 tháng 4 2017

Bài 1:

Ta có:

\(\left(100a+3b+1\right)\left(2^a+10a+b\right)=225\left(1\right)\)

\(225\) lẻ nên \(\left\{{}\begin{matrix}100a+3b+1\\2^a+10a+b\end{matrix}\right.\) cùng lẻ \(\left(2\right)\)

\(*)\) Với \(a=0\) ta có:

Từ \(\left(1\right)\Leftrightarrow\left(100.0+3b+1\right)\left(2^a+10.0+b\right)=225\)

\(\Leftrightarrow\left(3b+1\right)\left(1+b\right)=225=3^2.5^2\)

Do \(3b+1\div3\)\(1\)\(3b+1>1+b\)

Nên \(\left(3b+1\right)\left(1+b\right)=25.9\) \(\Rightarrow\left\{{}\begin{matrix}3b+1=25\\1+b=9\end{matrix}\right.\) \(\Leftrightarrow b=8\)

\(*)\) Với \(a\ne0\left(a\in N\right)\) ta có:

Khi đó \(100a\) chẵn, từ \(\left(2\right)\Rightarrow3b+1\) lẻ \(\Rightarrow b\) chẵn

\(\Rightarrow2^a+10a+b\) chẵn, trái với \(\left(2\right)\) nên \(b\in\varnothing\)

Vậy \(\left\{{}\begin{matrix}a=0\\b=8\end{matrix}\right.\)

Bài 2:

Ta có:

\(A=\dfrac{1}{1+3}+\dfrac{1}{1+3+5}+...+\dfrac{1}{1+3+...+2017}\)

\(=\dfrac{1}{\dfrac{\left(1+3\right).2}{2}}+\dfrac{1}{\dfrac{\left(1+5\right).3}{2}}+...+\dfrac{1}{\dfrac{\left(1+2017\right).1009}{2}}\)

\(=\dfrac{2}{2.4}+\dfrac{2}{3.6}+\dfrac{2}{4.8}+...+\dfrac{2}{1009.2018}\)

\(=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{1009.1009}\)

\(\Rightarrow A< \dfrac{1}{2.2}+\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{1008.1009}\right)\)

\(\Rightarrow A< \dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{1008}-\dfrac{1}{1009}\right)\)

\(\Rightarrow A< \dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{1009}\right)\)

\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}=\dfrac{3}{4}\) (Đpcm)

25 tháng 4 2017

Tuyệt cú mèokhocroikhocroikhocroi

                        GIÚP MÌNH VỚI !!!  AI GIÚP MÌNH ĐẦU TIÊN CẢ CHỖ NÀY MÌNH SẼ TICK KIỆT LIỆT CHO NGƯỜI ĐÓ NHABài 1: Chứng minh rằng:a)A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< 1\)b) B=\(\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{99.100}< 2\)c)C=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{3}{4}\)d) D=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\) Bài 2: cho biểu...
Đọc tiếp

                        GIÚP MÌNH VỚI !!!  AI GIÚP MÌNH ĐẦU TIÊN CẢ CHỖ NÀY MÌNH SẼ TICK KIỆT LIỆT CHO NGƯỜI ĐÓ NHA

Bài 1: Chứng minh rằng:

a)A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< 1\)

b) B=\(\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{99.100}< 2\)

c)C=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{3}{4}\)

d) D=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)

 

Bài 2: cho biểu thức: A=\(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}\)

Chứng tỏ : \(\frac{1}{2}< A< 1\)

Bài 3: Tìm x biết:

a) \(\frac{1}{6}.x+\frac{1}{12}.x+\frac{1}{20}.x+...+\frac{1}{2450}.x=1\)

b)\(\left|2\frac{2}{9}-x\right|=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)

 

Bài 4: Tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất:

a) A=\(\left(x-1^2\right)+2018\) 

b) B= |x+4| +1930

c)C=\(\frac{5}{x-2}\)

d)D=\(\frac{x+5}{x-4}\)

 

Bài 5 Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất:

a) P=2017-(x+1)2018

b) Q=1010-|3-x|

c) C=\(\frac{5}{\left(x-3\right)^2+1}\)

d)D=\(\frac{4}{\left|x-2\right|+2}\)

 

Bài 6: Cho biết 3a +2b chia hết cho 17 . Chứng minh rằng: 10a+b chia hết cho 17 (a,b\(\in\)\(ℤ\))

Bài 7: Chứng minh rằng 3x+5y\(⋮\)\(\Leftrightarrow\)x+4y\(⋮\)7 (x,y\(\in\)\(ℤ\))

GIÚP MÌNH NHA SAU ĐÓ AI GIÚP DC CHO MÌNH HẾT CHỖ NÀY SẼ CÓ THƯỞNG ĐÓ !!!!

 

 

 

0
 GIÚP MÌNH VỚI !!!  AI GIÚP MÌNH ĐẦU TIÊN CẢ CHỖ NÀY MÌNH SẼ TICK KIỆT LIỆT CHO NGƯỜI ĐÓ NHABài 1: Chứng minh rằng:a)A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< 1\)b) B=\(\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{99.100}< 2\)c)C=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{3}{4}\)d) D=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\) Bài 2: cho biểu thức:...
Đọc tiếp

 GIÚP MÌNH VỚI !!!  AI GIÚP MÌNH ĐẦU TIÊN CẢ CHỖ NÀY MÌNH SẼ TICK KIỆT LIỆT CHO NGƯỜI ĐÓ NHA

Bài 1: Chứng minh rằng:

a)A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< 1\)

b) B=\(\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{99.100}< 2\)

c)C=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{3}{4}\)

d) D=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)

 

Bài 2: cho biểu thức: A=\(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}\)

Chứng tỏ : \(\frac{1}{2}< A< 1\)

Bài 3: Tìm x biết:

a) \(\frac{1}{6}.x+\frac{1}{12}.x+\frac{1}{20}.x+...+\frac{1}{2450}.x=1\)

b)\(\left|2\frac{2}{9}-x\right|=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)

 

Bài 4: Tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất:

a) A=\(\left(x-1^2\right)+2018\) 

b) B= |x+4| +1930

c)C=\(\frac{5}{x-2}\)

d)D=\(\frac{x+5}{x-4}\)

 

Bài 5 Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất:

a) P=2017-(x+1)2018

b) Q=1010-|3-x|

c) C=\(\frac{5}{\left(x-3\right)^2+1}\)

d)D=\(\frac{4}{\left|x-2\right|+2}\)

 

Bài 6: Cho biết 3a +2b chia hết cho 17 . Chứng minh rằng: 10a+b chia hết cho 17 (a,b\(\in\)\(ℤ\))

Bài 7: Chứng minh rằng 3x+5y\(⋮\)\(\Leftrightarrow\)x+4y\(⋮\)7 (x,y\(\in\)\(ℤ\))

GIÚP MÌNH NHA SAU ĐÓ AI GIÚP DC CHO MÌNH HẾT CHỖ NÀY SẼ CÓ THƯỞNG ĐÓ !!!!

7
22 tháng 4 2018

CÁC BN GIÚP MK VS NHA !!!!! MK DAG CẦN CỰC KỲ GẤP ĐÓ Ạ , AI GIẢI DC HẾT CHỖ NÀY SẼ DC K 3 CÁI ĐÓ Ạ !!!! CÁM ƠN MỌI NGƯỜI TRƯỚC Ạ ^^

22 tháng 4 2018

\(a)\) Ta có : 

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(A=1-\frac{1}{2^{100}}< 1\)

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

21 tháng 4 2017

A=1/(1+3)+1/(1+3+5)+1/(1+3+5+7)+...+1/(1+3+5+7+...+2017)

A=1/2^2+1/3^2+1/4^2+...+1/1009^2

2A=2/2^2+2/3^2+2/4^2+...+2/1009^2

Ta co :(x-1)(x+1)=(x-1)x+x-1=x^2-x+x-1=x^2-1<x^2

suy ra 2A<2/(1*3)+2/(3*5)+2/(5*7)+...+2/(1008*1010)

suy ra 2A <1-1/3+1/3-1/5+1/5-1/7+...+1/1008-1/1010

suy ra 2A<1-1/1010

suy ra 2A<2009/2010<1<3/2

suy ra 2A <3/2

suy ra A <3/4 (dpcm)

nho k cho minh voi nha

3 tháng 3 2019

có cách nào dễ hiểu hơn không ạ?

16 tháng 4 2017

Vì bạn bảo gợi ý nên gợi ý thui không giải:
1) Bạn thấy con A có tử 6- 840 là âm mà 520+1 là dương =>tử âm,mẫu dương=> p/s đó là âm
Còn phần B thì trên tử 3-540 và 2-720 là 2 số âm,mà tử âm,mẫu âm thì phân số đó dương
Số dương như thế nào với số âm thì tự làm...(gợi ý mà)
2) Phần b giống phần a nhé!
 

16 tháng 4 2017

Cảm ơn bạn Phùng Quang Thịnh :D
Còn bài 3 mình đã thử giải nhưng chưa ra , vì mẫu số là các số tự nhiên không liền kề nhau nên không rút gọn được .