Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-1\right)^2-3.\left(x+2\right)^2=4.\left(x-2\right)-5.\left(x-1\right)^2\)
\(\Leftrightarrow4x^2-4x+1-3\left(x^2+4x+4\right)=4x-8-5.\left(x^2-2x+1\right)\)
\(\Leftrightarrow4x^2-4x+1-3x^2-7x-12=4x-8-5x^2+10x-5\)
\(\Leftrightarrow x^2-11x-11=14x-13-5x^2\)
\(\Leftrightarrow6x^2-25x+2=0\)
Tự làm tiếp nha
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
Bài 1:
Ta có: xy ≤ (x + y)²/4 = 1/4, dấu = xảy ra khi x = y = 1/2
P = (x² + 1/y²)(y² + 1/x²) = (xy)² + 1 + 1 + 1/(xy)²
= (xy)² + 1/[256(xy)²] + 255/[256(xy)²] + 2
ta có:
(xy)² + 1/[256(xy)²] ≥ 2 √(1/256) = 1/8. dấu = xảy ra khi x = y = 1/2
255/[256(xy)²] + 2 ≥ 255/(256.1/16) + 2 = 287/16. dấu = xảy ra khi x = y = 1/2
cộng theo vế → P ≥ 1/8 + 287/16 = 289/16
vậy GTNN của P là 289/16, đạt được khi x = y = 1/2
\(A=\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right).\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{3\sqrt{x}-x+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{3\left(\sqrt{x}+3\right)}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}.\frac{-\sqrt{x}\left(3-\sqrt{x}\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{-3\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)
2) pt đề bài cho=0
<=> \(\left(x-1\right)^2\left(2x^2-x+2\right)\)=0
<=>\(\orbr{\begin{cases}x-1=0\left(1\right)\\2x^2-x+2=0\left(2\right)\end{cases}}\)
Từ 1 => x=1
từ 2 =>\(2\left(x^2-\frac{1}{2}x+1\right)\)
=\(2\left[\left(x-\frac{1}{4}\right)^2+\frac{15}{16}\right]>0\)với mọi x
Nên pt 2 cô nghiệm
Vậy pt đề cho có nghiệm là 1
Bất cứ đa thức nào có dạng: \(f\left(x\right)=x^3\left(ax^2+bx+c\right)\) đều thỏa mãn đề bài
sai rồi hôm nay cô giáo em chữa có phải thế đâu