Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-\frac{2}{3}=\frac{10}{-15}=-\frac{10}{15}\)
\(\frac{4}{-5}=\frac{12}{-15}=-\frac{12}{15}\)
\(V\text{ì}-\frac{10}{15}>-\frac{12}{15}\)
Nên \(-\frac{2}{3}>-\frac{4}{5}\)
Ta có:
\(-\frac{2}{3}=\frac{4}{-6}\)
Vì \(\frac{4}{-6}>\frac{3}{-5}\Rightarrow\frac{-2}{3}>\frac{3}{-5}\)
Vậy \(\frac{-2}{3}>\frac{4}{-5}\)
Dễ thì làm đi ! ( Đó chỉ là dễ khi những người học rồi , làm rồi , biết rồi , .. Còn những người chưa học đến hay chưa làm ,.. thì không biết ) Ai bảo dễ thì làm đi Mình tick cho .( có cả cách làm nữa nha ! ) phạm minh quang ,
phạm minh quang
Số hữu tỉ dương: \(\frac{-3}{-5};\frac{2}{3}\)
Số hữu tỉ âm: \(\frac{-3}{7};\frac{1}{-5}\)
Số không phải là số hữu tỉ âm mà cũng không phải là số hữu tỉ âm: \(\frac{0}{-2}\)
+ Nếu a và b cùng dấu thì a/b dương => a/b > 0
+ Nếu a và b khác dấu thì a/b âm => a/b < 0
Trừ cả 4 vế cho 1 ta có:\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Áp dụng t/c của dãy tỉ số bằng nhau ta có:
\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}=\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)
Suy ra :
a+b+c+d=4a=4b=4c=4d hay a=b=c=d
Do đó:
M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{a+d}{b+c}=4\)
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
\(\Leftrightarrow1+\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\left(ĐK:a,b,c,d\ne0\right)\)
\(TH1:a+b+c+d=0\)
\(\Rightarrow\hept{\begin{cases}a+b=-\left(c+d\right)\\b+c=-\left(a+d\right)\end{cases}}\)
\(\Rightarrow M=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(b+c\right)}{b+c}+\frac{c+d}{-\left(c+d\right)}+\frac{d+a}{-\left(a+d\right)}=-1.4=-4\)
\(TH2:a+b+c+d=0\)
\(\Rightarrow a=b=c=d\)
\(\Rightarrow M=\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}=1.4=4\)
Vậy M=-4 hay M=4
p/s: =.= bn sử dụng công thức cho dễ đọc tí nhé :>
Bài 1:
a) Ta có:
\(\frac{-1}{3}< 0\)
\(\frac{1}{100}>0\)
\(\Rightarrow\frac{-1}{3}< \frac{1}{100}\)
b)Ta có;
\(\frac{-231}{232}>-1\)
\(\frac{-1321}{1320}< -1\)
\(\Rightarrow\frac{-231}{232}>\frac{-1321}{1320}\)
c) Ta có:
\(\frac{-27}{29}< 0\)
\(\frac{272727}{292929}>0\)
\(\Rightarrow\frac{-27}{29}< \frac{272727}{292929}\)
Bài 2:
\(a\left(b+1\right)=ab+a\)
\(b\left(a+1\right)=ab+b\)
Mà \(a< b\)
\(\Rightarrow a\left(b+1\right)< b\left(a+1\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)