K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2023

\(1,2\sqrt{27}+5\sqrt{12}-3\sqrt{48}\\ =2.3\sqrt{3}+5.2\sqrt{3}-3.4\sqrt{3}\\ =6\sqrt{3}+10\sqrt{3}-12\sqrt{3}\\ =4\sqrt{3}\)

\(2,\sqrt{147}+\sqrt{75}-4\sqrt{27}\\ =7\sqrt{3}+5\sqrt{3}-4.3\sqrt{3}\\ =7\sqrt{3}+5\sqrt{3}-12\sqrt{3}\\ =\sqrt{3}\left(7+5-12\right)\\ =0\)

\(3,3\sqrt{2}\left(4-\sqrt{2}\right)+3\left(1-2\sqrt{2}\right)^2\\ =3\sqrt{2}.\left(4-\sqrt{2}\right)+3\left(1-4\sqrt{2}+8\right)\\ =12\sqrt{2}-6+3-12\sqrt{2}+24\\ =21\)

\(4,2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}\\ =2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}\\ =\sqrt{5}\left(2-5-4+11\right)\\ =4\sqrt{5}\)

1: =6căn 3+10căn 3-12căn 3=4căn 3

2: =7căn 3+5căn 3-12căn 3=0

3: =12căn 2-6+3(9-4căn 2)

=12căn 2-6+27-12căn 2=21

4: =2căn 5-5căn 5+4căn 5+9 căn 5

=10căn 5

a: \(A=6\sqrt{3}+10\sqrt{3}-12\sqrt{3}=4\sqrt{3}\)

b: \(B=7\sqrt{3}+5\sqrt{3}-12\sqrt{3}=0\)

c: \(=12\sqrt{2}-6+3\left(9-4\sqrt{2}\right)=12\sqrt{2}-6+27-12\sqrt{2}=21\)

d: \(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=4\sqrt{5}\)

22 tháng 7 2017

a,=0

b,\(5\sqrt{5}\)

c=\(8\sqrt{7a}\)

d,=\(11\sqrt{3}\)

22 tháng 7 2017

bạn lm ra luôn đc ko

8 tháng 7 2019

1,

\(2\sqrt{5}-\sqrt{125}-\sqrt{80}\\ =2\sqrt{5}-\sqrt{25\cdot5}-\sqrt{16\cdot5}\\ =2\sqrt{5}-5\sqrt{5}-4\sqrt{5}\\ =-7\sqrt{5}\)

2,

\(3\sqrt{2}-\sqrt{8}+\sqrt{50}-4\sqrt{32}\\ =3\sqrt{2}-\sqrt{4\cdot2}+\sqrt{25\cdot2}-4\sqrt{16\cdot2}\\ =3\sqrt{2}-2\sqrt{2}+5\sqrt{2}-16\sqrt{2}\\=-10\sqrt{2}\)

3,

\(\sqrt{18}-3\sqrt{80}-2\sqrt{50}+2\sqrt{45}\\ =\sqrt{9\cdot2}-3\sqrt{16\cdot5}-2\sqrt{25\cdot2}+2\sqrt{9\cdot5}\\ =3\sqrt{2}-12\sqrt{5}-10\sqrt{2}+6\sqrt{5}\\ =-7\sqrt{2}-6\sqrt{5}\)

4,

\(\sqrt{27}-2\sqrt{3}+2\sqrt{48}-3\sqrt{75}\\ =\sqrt{9\cdot3}-2\sqrt{3}+2\sqrt{16\cdot3}-3\sqrt{25\cdot2}\\ =3\sqrt{3}-2\sqrt{3}+8\sqrt{3}-15\sqrt{3}\\ =-6\sqrt{3}\)

5,

\(3\sqrt{2}-4\sqrt{18}+\sqrt{32}-\sqrt{50}\\ =3\sqrt{2}-4\sqrt{9\cdot2}+\sqrt{16\cdot2}-\sqrt{25\cdot2}\\ =3\sqrt{2}-12\sqrt{2}+4\sqrt{2}-5\sqrt{2}\\ =-10\sqrt{2}\)

8 tháng 7 2019

6,

\(2\sqrt{3}-\sqrt{75}+2\sqrt{12}-\sqrt{147}\\ =2\sqrt{3}-\sqrt{25\cdot3}+2\sqrt{4\cdot3}-\sqrt{49\cdot3}\\ =2\sqrt{3}-5\sqrt{3}+4\sqrt{3}-7\sqrt{3}\\ =-6\sqrt{3}\)

7,

\(\sqrt{20}-2\sqrt{45}-3\sqrt{80}+\sqrt{125}\\ =\sqrt{4\cdot5}-2\sqrt{9\cdot5}-3\sqrt{16\cdot5}+\sqrt{25\cdot5}\\ =2\sqrt{5}-6\sqrt{5}-12\sqrt{5}+5\sqrt{5}\\ =-11\sqrt{5}\)

8,

\(6\sqrt{12}-\sqrt{20}-2\sqrt{27}+\sqrt{125}\\ =6\sqrt{4\cdot3}-\sqrt{4\cdot5}-2\sqrt{9\cdot3}+\sqrt{25\cdot5}\\ =12\sqrt{3}-2\sqrt{5}-6\sqrt{3}+5\sqrt{5}\\ =6\sqrt{3}+3\sqrt{5}\\ =3\left(2\sqrt{3}+\sqrt{5}\right)\)

9,

\(4\sqrt{24}-2\sqrt{54}+3\sqrt{6}-\sqrt{150}\\ =4\sqrt{4\cdot6}-2\sqrt{9\cdot6}+3\sqrt{6}-\sqrt{25\cdot6}\\ =8\sqrt{6}-6\sqrt{6}+3\sqrt{6}-5\sqrt{6}=0\)

10,

\(2\sqrt{18}-3\sqrt{80}-5\sqrt{147}+5\sqrt{245}-3\sqrt{98}\\ =2\sqrt{9\cdot2}-3\sqrt{16\cdot5}-5\sqrt{49\cdot3}+5\sqrt{49\cdot5}-3\sqrt{49\cdot2}\\ =6\sqrt{2}-12\sqrt{5}-35\sqrt{3}+35\sqrt{5}-21\sqrt{2}\\ =-15\sqrt{2}-35\sqrt{3}+23\sqrt{5}\)

9 tháng 10 2017

1) \(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}\)

\(=2\sqrt{5}-\sqrt{5^2.5}-\sqrt{4^2.5}+\sqrt{11^2.5}\)

\(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}\)

\(=4\sqrt{5}\)

2) \(\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{15-\sqrt{6^2.6}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{\left(\sqrt{6}\right)^2-6\sqrt{6}+3^2}+\sqrt{\left(2\sqrt{6}\right)^2-12\sqrt{6}+3^2}\)

\(=\sqrt{\left(\sqrt{6}-3\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=\left|\sqrt{6}-3\right|+\left|2\sqrt{6}-3\right|\)

\(=3-\sqrt{6}+2\sqrt{6}-3\)  ( vi \(\sqrt{6}-3< 0\))

\(=\sqrt{6}\)

5) \(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\)

\(=2\frac{4}{\sqrt{3}}-3.\frac{1}{3}-6\sqrt{\frac{2^2}{3.5^2}}\)

\(=\frac{8\sqrt{3}}{3}-1-6.\frac{2}{5}.\sqrt{\frac{1}{3}}\)

\(=8\frac{\sqrt{3}}{3}-1-\frac{12}{5}.\frac{\sqrt{3}}{3}\)

\(=\frac{28}{5}.\frac{\sqrt{3}}{3}-1\)

7 tháng 8 2018

 Báo cáo sai phạm

1) 2√5−√125−√80+√605

=2√5−√52.5−√42.5+√112.5

=2√5−5√5−4√5+11√5

=4√5

2) √15−√216+√33−12√6

=√15−√62.6+√33−12√6

=√15−6√6+√33−12√6

=√(√6)2−6√6+32+√(2√6)2−12√6+32

=√(√6−3)2+√(2√6−3)2

=|√6−3|+|2√6−3|

=3−√6+2√6−3  ( vi √6−3<0)

=√6

5) 2√163 −3√127 −6√475 

=24√3 −3.13 −6√223.52 

=8√33 −1−6.25 .√13 

=8√33 −1−125 .√33 

=285 .√33 −1

21 tháng 9 2018

Mysterious Person giúp e với! Em cảm ơn!!!

a: \(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=4\sqrt{5}\)

b: \(=2\sqrt{5}-2-2\sqrt{5}=-2\)

c: \(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)

d: \(=\dfrac{2\left(2\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-2\sqrt{2}\right)}-\dfrac{1}{\sqrt{6}}\)

\(=\dfrac{-3}{\sqrt{6}}=-\dfrac{3\sqrt{6}}{6}=-\dfrac{\sqrt{6}}{2}\)

e: \(=\dfrac{8}{3}\sqrt{3}-\dfrac{1}{3}\sqrt{3}-\dfrac{4}{5}\sqrt{3}=\dfrac{23}{15}\sqrt{3}\)

7 tháng 7 2020

Bài 2 :

a) \(ĐKXĐ:\hept{\begin{cases}x;y>0\\x\ne y\end{cases}}\)

b) \(A=\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}-\sqrt{y}}\right):\frac{x\sqrt{xy}+y\sqrt{xy}}{\sqrt{xy}\left(y-x\right)}\)

\(\Leftrightarrow A=\frac{x-\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}-\sqrt{y}}:\frac{x+y}{y-x}\)

\(\Leftrightarrow A=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}\cdot\frac{y-x}{x+y}\)

\(\Leftrightarrow A=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(y-x\right)}{x+y}\)

c) Thay \(x=4+2\sqrt{3},y=4-2\sqrt{3}\)vào A, ta được :

   \(A=\frac{\left(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\right)\left(4-2\sqrt{3}-4-2\sqrt{3}\right)}{4+2\sqrt{3}+4-2\sqrt{3}}\)

\(\Leftrightarrow A=\frac{\left(\sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\right).\left(-4\sqrt{3}\right)}{8}\)

\(\Leftrightarrow A=\frac{\left(1+\sqrt{3}-\sqrt{3}+1\right).\left(-4\sqrt{3}\right)}{8}=\frac{-8\sqrt{3}}{8}=-\sqrt{3}\)

Vậy ....

7 tháng 7 2020

Bài 1:

\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}-\sqrt{2}}=\frac{2\sqrt{2\cdot4}-\sqrt{3\cdot4}}{\sqrt{2\cdot9}-\sqrt{16\cdot3}}-\frac{\sqrt{5}+\sqrt{9\cdot3}}{\sqrt{30}-\sqrt{2}}\)

\(=\frac{4\sqrt{2}-2\sqrt{3}}{3\sqrt{2}-4\sqrt{3}}-\frac{\sqrt{5}+3\sqrt{3}}{\sqrt{30}-\sqrt{2}}=\frac{\left(4\sqrt{2}-2\sqrt{3}\right)\left(\sqrt{30}-\sqrt{2}\right)-\left(\sqrt{5}+3\sqrt{3}\right)\left(3\sqrt{2}-4\sqrt{3}\right)}{\left(3\sqrt{2}-4\sqrt{3}\right)\left(\sqrt{30}-\sqrt{2}\right)}\)

\(=\frac{4\sqrt{60}-8-2\sqrt{90}+2\sqrt{6}-3\sqrt{10}+4\sqrt{15}-9\sqrt{6}+36}{3\sqrt{60}-6-4\sqrt{90}+4\sqrt{6}}\)

\(=\frac{8\sqrt{15}-8-6\sqrt{10}+2\sqrt{6}-3\sqrt{10}+4\sqrt{15}-9\sqrt{6}+36}{6\sqrt{15}-6-12\sqrt{10}+4\sqrt{6}}\)

\(=\frac{12\sqrt{15}-2\sqrt{10}-7\sqrt{6}+28}{6\sqrt{15}-12\sqrt{10}+4\sqrt{6}-6}\)

Bài 1:

a) Ta có: \(5\sqrt{12}-\sqrt{45}-3\sqrt{48}+\sqrt{75}\)

\(=5\cdot2\cdot\sqrt{3}-\sqrt{3}\cdot\sqrt{15}-3\cdot\sqrt{3}\cdot4+5\sqrt{3}\)

\(=10\sqrt{3}-3\sqrt{5}-12\sqrt{3}+5\sqrt{3}\)

\(=3\sqrt{3}-3\sqrt{5}\)

b) Ta có: \(\left(1+\frac{5-\sqrt{5}}{1-\sqrt{5}}\right)\left(\frac{5+\sqrt{5}}{1+\sqrt{5}}+1\right)\)

\(=\left(\frac{1-\sqrt{5}+5-\sqrt{5}}{1-\sqrt{5}}\right)\cdot\left(\frac{5+\sqrt{5}+1+\sqrt{5}}{1+\sqrt{5}}\right)\)

\(=\frac{6-2\sqrt{5}}{1-\sqrt{5}}\cdot\frac{6+2\sqrt{5}}{1+\sqrt{5}}\)

\(=\frac{6^2-\left(2\sqrt{5}\right)^2}{1^2-\left(\sqrt{5}\right)^2}=\frac{36-20}{1-5}=\frac{16}{-4}=-4\)

2)

a) Ta có: \(P=x-\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}}{\sqrt{x}+2}\right)\cdot\frac{x-4}{\sqrt{4x}}\)

\(=x-\left(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\cdot\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\)

\(=x-\frac{x+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\)

\(=x-\frac{2x}{2\sqrt{x}}\)

\(=x-\sqrt{x}\)

b) Ta có: \(x=7-\sqrt{48}\)

\(=\frac{14-2\sqrt{48}}{2}=\frac{8-2\cdot2\sqrt{2}\cdot\sqrt{6}+6}{2}\)

\(=\frac{\left(2\sqrt{2}-\sqrt{6}\right)^2}{2}=\frac{\left[\sqrt{2}\cdot\left(2-\sqrt{3}\right)\right]^2}{2}\)

\(=\frac{2\cdot\left(2-\sqrt{3}\right)^2}{2}=\left(2-\sqrt{3}\right)^2\)

Thay \(x=\left(2-\sqrt{3}\right)^2\) vào biểu thức \(P=x-\sqrt{x}\), ta được:

\(P=\left(2-\sqrt{3}\right)^2-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=7-4\sqrt{3}-\left|2-\sqrt{3}\right|\)

\(=7-4\sqrt{3}-\left(2-\sqrt{3}\right)\)(Vì \(2>\sqrt{3}\))

\(=7-4\sqrt{3}-2+\sqrt{3}\)

\(=5-3\sqrt{3}\)

c) Ta có: \(P=x-\sqrt{x}\)

\(=x-2\cdot\sqrt{x}\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)

\(=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\)

Ta có: \(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\forall x\)

Dấu '=' xảy ra khi \(\sqrt{x}-\frac{1}{2}=0\)

\(\Leftrightarrow\sqrt{x}=\frac{1}{2}\)

hay \(x=\frac{1}{4}\)(nhận)

Vậy: Giá trị nhỏ nhất của biểu thức \(P=x-\sqrt{x}\)\(-\frac{1}{4}\) khi \(x=\frac{1}{4}\)