K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2016

\(A=\sqrt{x}+3\)

Vì \(\sqrt{x}\ge0\)

=> \(\sqrt{x}+3\ge3\)

Vậy GTNN của A là 3 khi x=0

\(B=\sqrt{x-1}-5\)

Vì:\(\sqrt{x-1}\ge0\)

\(\Rightarrow\sqrt{x-1}-5\ge-5\)

Vậy GTNN của B là -5 khi x=1

3 tháng 9 2016

a)Ta thấy: \(\sqrt{x}\ge0\)

\(\Rightarrow\sqrt{x}+3\ge0+3=3\)

\(\Rightarrow A\ge3\)

Dấu = khi \(x=0\)

Vậy MinA=3 khi x=0

b)Ta thấy: \(\sqrt{x-1}\ge0\)

\(\Rightarrow\sqrt{x-1}-5\ge0-5=-5\)

\(\Rightarrow B\ge-5\)

Dấu = khi x=1

Vậy MinA=-5 khi x=1

17 tháng 10 2018

mik cũng đang tìm bài này hình đại diên Suga phải

 ko

19 tháng 8 2020

P/s : Làm bừa 

\(A=\sqrt{x+3}\)

\(\Leftrightarrow A^2=x+3\ge3\)

\(\Leftrightarrow A\ge\sqrt{3}\)

Min \(A=\sqrt{3}\Leftrightarrow x=0\)

30 tháng 6 2019

\(A=\sqrt{x}-3\ge-3\)với \(\forall x\)

\(A_{min}=-3\Leftrightarrow\sqrt{x}=0\)

\(\Rightarrow x=0\)

\(B=\sqrt{x}-1+2=\sqrt{x}+1\ge1\)với \(\forall x\)

\(\Rightarrow B_{min}=1\Leftrightarrow\sqrt{x}=0\)

\(\Rightarrow x=0\)

11 tháng 7 2019

a) Ta có: \(\left|x+\frac{3}{2}\right|\ge0\forall x\)

 Hay : P \(\ge\)\(\forall\)x

Dấu "=" xảy ra khi: \(x+\frac{3}{2}=0\) <=> \(x=-\frac{3}{2}\)

Vậy Pmin = 0 tại x  = -3/2

b) Ta có: \(\left|3-x\right|\ge0\forall x\)

=> \(\left|3-x\right|+\frac{2}{5}\ge\frac{2}{5}\forall x\)

hay P \(\ge\)2/5 \(\forall\)x

Dấu "=" xảy ra khi: 3 - x = 0 <=> x = 3

Vậy Pmin = 2/5 tại x = 3

11 tháng 7 2019

a)Có giá trị tuyệt đối của x+3/2 >=0 với mọi x

=> P>=0 với mọi x

P=0 khi x+3/2=0 <=> x=-3/2

Vậy P có giá trị nhỏ nhất là 0 khi x=-3/2

6 tháng 10 2018

Thời gian có hạn copy cái này hộ mình vào google xem nha: :

Link :   https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi

Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....

Có 500 giải nhanh nha đã có 200 người nhận rồi. Mình là phụ trách

OK<3

6 tháng 10 2018

1a/ Để B có nghĩa thì x+1≥0 => x≥-1

b/ B>2

=> \(\sqrt{x+1}>2\)

\(\Rightarrow x+1>4\Rightarrow x>3\)

2a/ Để A có nghĩa thì 2003-x≥0 => x≤2003

b/ Ta có \(\sqrt{2003-x}\ge0\forall x\)

=>A≥2004

MinA=2004 khi x=2003

Chúc bạn học tốt!

1 tháng 10 2019

Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)

Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5

 Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)

Vậy B đạt giá  trị lớn nhất là 3/19 khi và chỉ khi x = 5

C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2

Suy ra x là số chính phương lẻ

 Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}

28 tháng 10 2016

a) Để A có nghĩa thì \(2003-x\ge0\Rightarrow x\le2003\)

b) Có: \(\sqrt{2003-x}\ge0\forall x\le2003\)

\(\Rightarrow A=2004+\sqrt{2003-x}\ge2004\forall x\le2003\)

Dấu ''=" xảy ra khi \(\sqrt{2003-x}=0\)

\(\Leftrightarrow2003-x=0\Leftrightarrow x=2003\)

Vậy với x = 2003 thì A đạt GTNN là 2004

6 tháng 10 2018

a) Để \(2018+\sqrt{2018-x}\)  thì \(\sqrt{2018-x}\ge0\Leftrightarrow x\le2018\)

b) Để A đạt giá trị nhỏ nhất thì \(\sqrt{2018-x}\) nhỏ nhất. Mà \(\sqrt{2018-x}\ge0\) nên

\(A=2018+\sqrt{2018-x}\ge2018\)

Vậy \(A_{min}=2018\Leftrightarrow\sqrt{2018-x}=0\Leftrightarrow x=2018\)