Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề là j, chứng minh hay tìm n để thỏa mãn ddieuf kiện j đó hả b
1.Chứng minh rằng: \(\frac{12n+1}{30n+2}\)là phân số tối giản.
2.Chứng minh rằng: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{100^2}< 1\)
3.Chứng minh rằng nếu ab + cd + eg \(⋮\)11 thì abcdeg \(⋮\)11
4.Chứng minh rằng: 1028 + 8 \(⋮\)72
5.Chứng minh rằng: Cho S = 30 + 32 + 34 + 36 +....+ 32002
a) Tính S
b) Chứng minh S \(⋮\)7
6.Chứng minh rằng: A = 3 + 32 + 33 + 34 +.....+ 3100 \(⋮\)120
7 = 1 + 6 = 6 + 1 = 5 + 2 = 2 + 5 = 3 + 4 = 4 + 3
Vậy có 6 cách viết
2A=22+23+....+22022)
2A-A=(22+23+...+22022)-(2+22+....+22021)
A=22022-2
Đây nhé!
\(F=2+2^2+2^3+...+2^{100}\)
\(2F=2^2+2^3+2^4+...+2^{101}\)
\(2F-F=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(F=2^{101}-2\)
Vậy...
\(E=3^0+3^1+3^2+...+3^{100}\)
\(E=1+3+3^2+...+3^{100}\)
\(3E=3+3^2+...+3^{101}\)
\(3E-3E=\left(3+3^2+...+3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)
\(2E=3^{101}-1\)
\(E=\frac{3^{101}-1}{2}\)
Vậy...
(2 + 4 + 6 + 8 + ... + 2014) - (3 + 5 + 7 + 9 + ... + 2011)
= 2 + 4 + 6 + 8 + ... + 2014 - 3 - 5 - 7 - 9 - ... - 2011
= 2 + (4 - 3) + (6 - 5) + (8 - 7) + ... + (2012 - 2011) + 2014 (có 1005 cặp)
= 2 + 2014 + 1 + 1 + ... + 1 (có 1005 số 1)
= 2016 + 1005
= 3021
(2+4+6+8+...+2014)-(3+5+7+9+...+2011)
= 2+4+6+8+..+2014-3-5-7-9-...-2011
= (2-3)+(4-5)+(6-7)+(8-9)+...+(2010-2011)+2011+2012+2013+2014
= (-1)+(-1)+(-1)+(-1)+...+(-1)+2011+2012+2013+2014 gồm [(2011-2):1+1]:2=1005 số -1
=(-1).1005+2011+2012+2013+2014
=-1005+2011+2012+2013+2014
=7045
Bài 3:
a; \(\dfrac{-4}{9}\) - 2\(x\) = \(\dfrac{5}{-12}\) - \(\dfrac{-5}{9}\)
\(\dfrac{-4}{9}\) - 2\(x\) = \(\dfrac{5}{36}\)
2\(x\) = \(\dfrac{-4}{9}\) - \(\dfrac{5}{36}\)
2\(x\) = - \(\dfrac{7}{12}\)
\(x\) = - \(\dfrac{7}{12}\) : 2
\(x\) = - \(\dfrac{7}{24}\)
Vậy \(x\) = - \(\dfrac{7}{24}\)
b; \(\dfrac{1}{2}\)(\(x\) + 2) + \(\dfrac{3}{8}\) = \(\dfrac{7}{16}\)
\(\dfrac{1}{2}\)\(x\) + 1 + \(\dfrac{3}{8}\) = \(\dfrac{7}{16}\)
\(\dfrac{1}{2}x\) + \(\dfrac{11}{8}\) = \(\dfrac{7}{16}\)
\(\dfrac{1}{2}\)\(x\) = \(\dfrac{7}{16}\) - \(\dfrac{11}{8}\)
\(\dfrac{1}{2}x\) = - \(\dfrac{15}{16}\)
\(x\) = - \(\dfrac{15}{16}\) \(\times\) 2
\(x\) = - \(\dfrac{15}{8}\)
Vậy \(x\) = - \(\dfrac{15}{8}\)
c; (\(\dfrac{1}{3}\) - \(x\)) : \(\dfrac{3}{4}\) + \(\dfrac{1}{4}\) = - \(\dfrac{2}{3}\)
(\(\dfrac{1}{3}\) - \(x\)) : \(\dfrac{3}{4}\) = - \(\dfrac{2}{3}\) - \(\dfrac{1}{4}\)
(\(\dfrac{1}{3}\) - \(x\)) : \(\dfrac{3}{4}\) = - \(\dfrac{11}{12}\)
\(\dfrac{1}{3}\) - \(x\) = - \(\dfrac{11}{12}\) x \(\dfrac{3}{4}\)
\(\dfrac{1}{3}\) - \(x\) = - \(\dfrac{11}{16}\)
\(x\) = \(\dfrac{1}{3}\) + \(\dfrac{11}{16}\)
\(x\) = \(\dfrac{49}{48}\)
Vậy \(x\) = \(\dfrac{49}{48}\)