Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tỉ số \(6\frac{1}{\frac{5}{5\frac{1}{6}}}\) có thể rút gọn thành \(\frac{6}{5}\).Thử lại: \(6\frac{1}{\frac{5}{5\frac{1}{6}}}\)=\(\frac{31}{\frac{5}{\frac{31}{6}}}\)=\(\frac{31}{5}\).\(\frac{6}{31}\)=\(\frac{6}{5}\)
ta có thể viết tỉ số khác cũng có thể "rút gọn" như vậy:VD: \(1\frac{7}{\frac{9}{2\frac{1}{7}}}\)=\(\frac{7}{8}\)
a) Xem hình vẽ.
b)
c) Điền vào chỗ trống:
1) (vì là hai góc kề bù).
2) (theo giả thiết và căn cứ vào 1).
3) (căn cứ vào 2).
4) (vì là hai góc đối đỉnh).
5) (căn cứ vào 4 và giả thiết).
6) (vì là hai góc đối đỉnh).
7) (căn cứ vào 6 và 3).
d)Trình bày lại cách chứng minh một cách gọn hơn.
Ta có: (hai góc kề bù) mà (gt)
nên .
Suy ra
Lại có (hai góc đối đỉnh).
Suy ra .
Áp dụng định lý tổng ba góc trong một tam giác bằng 180º ta có:
- Hình 47
x + 90o + 55o = 180o
x = 180o - 90o - 55o
x = 35o
- Hình 48
x + 30o + 40o = 180o
x = 180o - 30o - 40o
x = 110o
- Hình 49
x + x + 50o = 180o
2x = 180o - 50o
x = 65o
Áp dụng định lý góc ngoài của tam giác ta có:
- Hình 50
y = 60o + 40o
y = 100o
x + 40o = 180o (2 góc kề bù)
x = 140o
- Hình 51
Áp dụng định lý góc ngoài trong tam giác ABD có: x = 70º + 40º = 110º
Áp dụng định lý tổng ba góc trong tam giác ADC có:
y + 110º + 40º = 180º ⇒ y = 30º.
TL
a) Ta có ˆBIKBIK^ là góc ngoài tại đỉnh II của ΔBAIΔBAI.
Nên ˆBIK=ˆBAI+ˆABI>ˆBAIBIK^=BAI^+ABI^>BAI^
Mà ˆBAK=ˆBAIBAK^=BAI^
Vậy ˆBIK>ˆBAKBIK^>BAK^ (1)
b) Ta có ˆCIKCIK^ là góc ngoài tại đỉnh II của ΔAICΔAIC
nên ˆCIK=ˆCAI+ˆICA>ˆCAICIK^=CAI^+ICA^>CAI^
Hay ˆCIK>ˆCAICIK^>CAI^ (2)
Từ (1) và (2) ta có:
ˆBIK+ˆCIK>ˆBAK+ˆCAIBIK^+CIK^>BAK^+CAI^
⇒ˆBIC>ˆBAC⇒BIC^>BAC^.
Hok tốt nha bn
#Kirito
a) 2n = 16/2=8= 23 => n =3
b) (-3)n = (-27).81 =(-3)3.34= (-3)7 => n = 7
c) 4 =22= 23n.2n = 23n-n = 22n => n =1
\(5\frac{1}{7}\)trên \(7\frac{1}{5}\)=\(\frac{5}{7}\)