K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

Đặt AB=a; AC=b; BC=c

AB/AC=3/4

nên a/b=3/4

=>a=3/4b

Theo đề, ta có: \(a^2+b^2=c^2\)

\(\Leftrightarrow b^2\cdot\dfrac{25}{16}=225\)

=>b=12

=>a=9

15 tháng 2 2017

\(\frac{47}{32}\)

15 tháng 2 2017

bạn làm như thế nào?

15 tháng 2 2017

\(a+b=4\)

17 tháng 2 2017

cách tính ?

27 tháng 2 2017

ô thứ 2 ở dưới

b: |2x-1|<5

=>2x-1>-5 và 2x-1<5

=>2x>-4 và 2x<6

=>-2<x<3

mà x là số nguyên dương

nên \(x\in\left\{1;2\right\}\)

1 tháng 3 2017

đề sai sailimdim

1 tháng 3 2017

Từ \(\dfrac{9x}{4}\)=\(\dfrac{16}{x}\)

9x\(^2\)=4*16=69

=>x\(^2\)=69/9=\(\dfrac{64}{9}\)

=>x=\(\dfrac{-8}{3}\)

15 tháng 3 2017

2.

a) +) ta co: tam giác GLO

GL = 6, LO = 8, OG = 10

=> GL < LO < GO ( 6<8<10)

=> góc O < góc G < góc L ( quan hệ giữa góc và cạnh đối diện trong tam giác LOG )

+) ta co: tam giac UVW

góc V = 40, góc U = 50

=> góc W = 180 - ( góc V + goc Ư )

= 180 - ( 50 + 40)

= 90

=> góc V < góc U < góc W

=> UW < VW < VU ( quan hệ giữa cạnh và góc trong tam giác ACB )

15 tháng 3 2017

Bài 1 de rồi bạn tự làm nhé!!

28 tháng 7 2017

Bài 1:

x y m B A C 1 1 2 1

Qua B, vẽ tia Bm sao cho Bm // Ax

Bm // Ax ( cách vẽ ) => góc A1 + góc B1 = 180o ( trong cùng phía )

Mà góc A1 = 140o ( giả thiết ) => góc B1 = 40o

Ta có: góc B1 + góc B2 = góc ABC

Mà góc ABC = 70o ( giả thiết ); góc B1 = 40o ( chứng minh trên )

=> góc B2 = 30o

Ta có: góc B2 + góc C1 = 30o + 150o = 180o

Mà hai góc này ở vị trí trong cùng phía

=> Bm // Cy ( dấu hiệu nhận biết 2 đường thẳng song song )

Ta lại có:

Ax // Bm ( cách vẽ ); Cy // Bm ( chứng minh trên )

=> Ax // Cy ( tính chất 3 quan hệ từ vuông góc đến song song ) ( đpcm )

Bài 3:

A B C F E G N M H 1 2

a) Chứng minh AH < \(\dfrac{1}{2}\) ( AB + AC )

+) Vì AH vuông góc với BC ( giả thiết )

=> AH < AB ( quan hệ giữa đường vuông góc và đường xiên ) ( 1 )

+) Vì AH vuông góc với BC ( giả thiết )

=> AH < AC ( quan hệ giữa đường vuông góc và đường xiên ) ( 2 )

+) Từ ( 1 ) và ( 2 ) => AH + AH < AB + AC

=> 2 . AH < AB + AC

=> AH < \(\dfrac{1}{2}\) ( AB + AC ) ( đpcm )

b) Chứng minh EF = BC

+) Vì BM là đường trung tuyến của tam giác ABC ( giả thiết )

=> \(\dfrac{BG}{BM}=\dfrac{2}{3}\)

=> \(\dfrac{MG}{BG}=\dfrac{1}{2}\)

=> 2 . MG = BG

Mà EM = MG ( do BM là đường trung tuyến của tam giác ABC )

=> EM + MG = BG => EG = BG

+) Vì CN là đường trung tuyến của tam giác ABC ( giả thiết )

=> \(\dfrac{CG}{CN}=\dfrac{2}{3}\)

=> \(\dfrac{GN}{CG}=\dfrac{1}{2}\)

=> 2 . GN = CG

Mà FN = GN ( do CN là đường trung tuyến của tam giác ABC )

=> FN + GN = CG => FG = CG

Góc G1 = góc G2 ( đối đỉnh )

Xét tam giác FEG và tam giác CBG có:

FG = CG ( chứng minh trên )

EG = BG ( chứng minh trên )

Góc G1 = góc G2 ( chứng minh trên )

=> tam giác FEG = tam giác CBG ( c.g.c )

=> EF = BC ( 2 cạnh tương ứng ) ( đpcm )

2 tháng 3 2017

Ta có: \(\left|x-1\right|+\left|x-5\right|=\left|x-1\right|+\left|5-x\right|\)

Nhận thấy: \(\left[{}\begin{matrix}\left|x-1\right|\ge x-1\\\left|5-x\right|\ge5-x\end{matrix}\right.\)

\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge x-1+5-x\)

\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge4\)

Dấu \("="\) xảy ra khi:

\(\left[{}\begin{matrix}x-1\ge0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le5\end{matrix}\right.\) \(\Rightarrow1\le x\le5\)

Vậy \(1\le x\le5.\)

2 tháng 3 2017

Cho mk thêm cái ạ:

\(x\in\left\{1;2;3;4;5\right\}\)

Vậy \(x\in\left\{1;2;3;4;5\right\}\)

6 tháng 3 2017

hình như là D

6 tháng 3 2017

Cho xin bản dịch với leu