Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(\left[\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{x-1}\right]:\dfrac{2\sqrt{3x}}{x-1}\)
\(=\left(\dfrac{x+\sqrt{x}+x-\sqrt{x}}{x-1}\right).\dfrac{x-1}{2\sqrt{3x}}\)
\(=\dfrac{2x}{x-1}.\dfrac{x-1}{2\sqrt{3x}}=\dfrac{\sqrt{x}}{\sqrt{3}}=\dfrac{\sqrt{3x}}{3}\)
\(3+\sqrt{2x-3}=x\) (ĐKXĐ: x \(\ge\)1,5)
\(\Leftrightarrow\sqrt{2x-3}=x-3\)
\(\Leftrightarrow2x-3=x^2-6x+9\)
\(\Leftrightarrow-x^2+8x-12=0\)
\(\Leftrightarrow-\left(x^2-8x+12\right)=0\)
\(\Leftrightarrow x^2-6x-2x+12=0\)
\(\Leftrightarrow x.\left(x-6\right)-2.\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=6\\x=2\end{cases}\left(\text{TMĐK}\right)}\)
Vậy ...
Có \(2x^2+5x+3=2x^2+2x+3x+3=2x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(2x+3\right)\)
\(\Rightarrow\left(\sqrt{2x+3}-\sqrt{x+1}\right)\left(\sqrt{2x^2+5x+3}+1\right)=x+2\left(ĐKXĐ:x\ge-1\right)\\ \Leftrightarrow\left(\sqrt{2x+3}-\sqrt{x+1}\right)\left(\sqrt{\left(2x+3\right)\left(x+1\right)}+1\right)=2x+3-\left(x+1\right)\left(1\right)\)
Đặt \(\sqrt{2x+3}=a\ge1,\sqrt{x+1}=b\ge0\), phương trình (1) trở thành:
\(\left(a-b\right)\left(ab+1\right)=a^2-b^2\)
\(\left(a-b\right)\left(ab+1\right)-\left(a-b\right)\left(a+b\right)=0\\ \Leftrightarrow\left(a-b\right)\left(ab+1-a-b\right)=0\\ \Leftrightarrow\left(a-b\right)\left[a\left(b-1\right)-\left(b-1\right)\right]=0\\ \Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\\
\Leftrightarrow\left[{}\begin{matrix}a-b=0\\a-1=0\\b-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=b\\a=1\\b=1\end{matrix}\right.\)
+) Với a=b ta có: \(\sqrt{2x+3}=\sqrt{x+1}\Leftrightarrow2x+3=x+1\Leftrightarrow x=-2\left(ktm\right)\)
+) Với a=1 ta có: \(\sqrt{2x+3}=1\Leftrightarrow2x+3=1\Leftrightarrow x=-1\left(tm\right)\)
+) Với b=1 ta có : \(\sqrt{x+1}=1\Leftrightarrow x+1=1\Leftrightarrow x=0\left(tm\right)\)
Vậy phương trình có tập nghiệm \(S=\left\{-1;0\right\}\).
Tick cho mình nha <3 !!!
a: \(=2\sqrt{6}\cdot3\sqrt{6}-4\sqrt{3}\cdot3\sqrt{6}+5\sqrt{2}\cdot3\sqrt{6}-\dfrac{1}{4}\cdot2\sqrt{2}\cdot3\sqrt{6}\)
\(=36-36\sqrt{2}+30\sqrt{3}-3\sqrt{3}\)
\(=36-36\sqrt{2}+27\sqrt{3}\)
b: \(=\left(-2\cdot\sqrt[3]{\dfrac{9}{5}}+4\cdot\sqrt[3]{\dfrac{1}{3}}\right):2\sqrt[3]{\dfrac{1}{3}}\)
\(=-\sqrt[3]{\dfrac{9}{5}:\dfrac{1}{3}}+2\cdot1\)
\(\simeq-1.75+2=0.25\)
Bài 4 :
a, Với \(a>0\)
\(P=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=\frac{\sqrt{a}\left(a\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}-1+1=a-\sqrt{a}\)
b, Ta có : \(a-\sqrt{a}-2=0\Leftrightarrow\sqrt{a}=2;\sqrt{a}=-1\left(voli\right)\Rightarrow a=4\)
còn 5 6 ạ