Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 :
a, \(-x^3+3x^2-3x+1=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
Thay x = 6 ta được : \(-\left(6-1\right)^3=-\left(5\right)^3=-125\)
b, \(8-12x+6x^2-x^3=\left(2-x\right)^3\)
Thay x = 12 ta được : \(\left(2-12\right)^3=\left(-10\right)^3=-1000000\)
Bài 4 :
a, \(A=163^2+74.163+37^2=163^2+2.37.163+37^2\)
\(=\left(163+37\right)^2=\left(200\right)^2=40000\)
Trả lời:
Bài 3:
a, \(-x^3+3x^2-3x+1=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
Thay x = 6 vào biểu thức trên, ta có:
\(-\left(6-1\right)^3=-5^3=-125\)
b, \(8-12x+6x^2-x^3=2^3-3.2^2.x+3.2.x^2-x^3=\left(2-x\right)^3\)
Thay x = 12 vào biểu thức trên, ta có:
\(\left(2-12\right)^3=\left(-10\right)^3=-1000\)
Bài 4:
a, Ta có: \(A=\) \(163^2+74.163+37^2=163^2+2.163.37+37^2=\left(163+37\right)^2=200^2\)
\(B=\)\(147^2-94.147+47^2=147^2-2.147.47+47^2=\left(147-47\right)^2=100^2\)
Vì \(200^2>100^2\)
nên \(A>B\)
b, Ta có: \(C=\left(2^2+4^2+...+100^2\right)-\left(1^2+3^2+...+99^2\right)\)
\(=2^2+4^2+...+100^2-1^2-3^2-...-99^2\)
\(=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left(100^2-99^2\right)\)
\(=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(100-99\right)\left(100+99\right)\)
\(=1.3+1.7+...+1.199\)
\(=3+7+...+199\)
\(=\frac{\left(199+3\right).50}{2}=5050\) (50 là số số hạng)
\(D=3^8.7^8-\left(21^4-1\right)\left(21^4+1\right)\)
\(=\left(3.7\right)^8-\left[\left(21^4\right)^2-1\right]=21^8-21^8+1=1\)
Vì \(5050>1\)
nên \(C>D\)
b) Bạn đã chứng minh được tứ giác EKFC là hình bình hành ở câu a, mà EF cắt CK tại I \(\Rightarrow\)I là trung điểm EF (tính chất hình bình hành)
\(\Rightarrow AI\)là trung tuyến của \(\Delta AEF\)
Mà \(\Delta AEF\)vuông tại A \(\Rightarrow AI=\frac{1}{2}EF\)(tính chất tam giác vuông)
Lại có \(EI=\frac{1}{2}EF\)do I là trung điểm của đoạn EF \(\Rightarrow AI=EI\left(=\frac{1}{2}EF\right)\)
Mặt khác \(BE\perp AF\), \(MI\perp AF\left(gt\right)\)\(\Rightarrow BE//MI\)(quan hệ từ vuông góc đến song song)
Mà tứ giác BEFD là hình bình hành \(\Rightarrow BD//EF\)(tính chất hình bình hành)
\(\Rightarrow BM//EI\)(vì \(M\in BD;I\in EF\))
Xét tứ giác BEIM có \(BE//MI\left(cmt\right);BM//EI\left(cmt\right)\)\(\Rightarrow\)Tứ giác BEIM là hình bình hành (định nghĩa)
\(\Rightarrow BM=EI\)(tính chất hình bình hành)
Mà \(AI=EI\left(cmt\right)\)\(\Rightarrow AI=BM\left(=EI\right)\left(đpcm\right)\)
c) Do tứ giác BEFD là hình bình hành \(\Rightarrow\hept{\begin{cases}BE//DF\\BE=DF\end{cases}}\)(tính chất hình bình hành)
Mà \(\hept{\begin{cases}BE\perp CF\\BE=CF\end{cases}}\left(gt\right)\Rightarrow\hept{\begin{cases}DF\perp CFtạiF\\DF=CF\end{cases}}\)\(\Rightarrow\)F nằm trên đường trung trực của đoạn CD và \(\Delta CDF\)vuông cân tại F
\(\Rightarrow\widehat{DCF}=45^0\)
\(\Delta ABC\)vuông cân tại A (gt) \(\Rightarrow\widehat{ACB}=45^0\)
\(\Rightarrow\widehat{BCD}=180^0-\widehat{ACB}-\widehat{DCF}=180^0-45^0-45^0=90^0\)
\(\Rightarrow\Delta BCD\)vuông tại C.
Xét hình thang BEFD (BE//DF) ta có I là trung điểm EF (cmt) và IM//BE (cmt) \(\Rightarrow\)M là trung điểm của đoạn BD
\(\Rightarrow\)CM là trung tuyến của \(\Delta BCD\)
Mặt khác \(\Delta BCD\)vuông tại C \(\Rightarrow CM=\frac{1}{2}BD\)(tính chát tam giác vuông)
Mà \(DM=\frac{1}{2}BD\)do M là trung điểm BD \(\Rightarrow DM=CM\left(=\frac{1}{2}BD\right)\)
\(\Rightarrow\)M nằm trên đường trung trực của đoạn CD.
Mà F cũng nằm trên đường trung trực của đoạn CD (cmt)
\(\Rightarrow\)MF là đường trung trực của đoạn CD \(\Rightarrow\)C đối xứng với D qua MF (đpcm)
c, là hằng đẳng thức nha bạn
(\(\sqrt{x}\)+\(\sqrt{2x}\))2=0
suy ra \(\sqrt{x}\)+\(\sqrt{2x}\)=0
\(\sqrt{x}\)=\(\sqrt{2x}\)
suy ra x=0
Bài 2: Tìm x:
a) \(3x^2\)\(-27x=0\)
\(< =>3x\left(x-9\right)=0\)
\(=>x=0\) hay \(x-9=0\)
\(=>x=0\) hay \(x=9\)
18, \(\frac{x}{2}+\frac{x^2}{8}=0\Leftrightarrow4x+x^2=0\Leftrightarrow x\left(x+4\right)=0\Leftrightarrow x=-4;x=0\)
19, \(4-x=2\left(x-4\right)^2\Leftrightarrow\left(4-x\right)-2\left(4-x\right)^2=0\)
\(\Leftrightarrow\left(4-x\right)\left[1-2\left(4-x\right)\right]=0\Leftrightarrow\left(4-x\right)\left(-7+2x\right)=0\Leftrightarrow x=4;x=\frac{7}{2}\)
20, \(\left(x^2+1\right)\left(x-2\right)+2x-4=0\Leftrightarrow\left(x^2+1\right)\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3>0\right)=0\Leftrightarrow x=2\)
21, \(x^4-16x^2=0\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\Leftrightarrow x=0;x=\pm4\)
22, \(\left(x-5\right)^3-x+5=0\Leftrightarrow\left(x-5\right)^3-\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[\left(x-5\right)^2-1\right]=0\Leftrightarrow\left(x-5\right)\left(x-6\right)\left(x-4\right)=0\Leftrightarrow x=4;x=5;x=6\)
23, \(5\left(x-2\right)-x^2+4=0\Leftrightarrow5\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5-x-2\right)=0\Leftrightarrow x=2;x=3\)