K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2021

Hình tự vẽ nha!

a, Xét đường tròn (O) có: \(\widehat{BAE}=\widehat{CAE}\) (AE là p/g của tam giác ABC)

Mà \(\widehat{BAE}\) và \(\widehat{CAE}\) là 2 góc nội tiếp chắn cung BE và EC

\(\Rightarrow\) \(sđ\stackrel\frown{BE}=sđ\stackrel\frown{EC}\) (hệ quả góc nt)

\(\Rightarrow\) E nằm chính giữa cung BC

\(\Rightarrow\) OE \(\perp\) BC

Lại có: AH \(\perp\) BC (gt)

\(\Rightarrow\) OE//AH (đpcm)

b, Xét đường tròn (O) có: \(\widehat{MAE}\) là góc tạo bởi tia tiếp tuyến và dây cung chắn cung AE (gt)

\(\Rightarrow\) \(\widehat{MAE}\) = \(\dfrac{1}{2}sđ\stackrel\frown{AE}\) (t/c góc tạo bởi tia tiếp tuyến và dây cung) (1)

Xét đường tròn (O) có: \(\widehat{MDA}\) là góc có đỉnh nằm bên trong đường tròn (gt)

\(\Rightarrow\) \(\widehat{MDA}=\dfrac{1}{2}\cdot\left(sđ\stackrel\frown{AB}+sđ\stackrel\frown{EC}\right)\)

Mà \(sđ\stackrel\frown{EC}=sđ\stackrel\frown{BE}\) (cma)

\(\Rightarrow\) \(\widehat{MDA}=\dfrac{1}{2}\cdot\left(sđ\stackrel\frown{AB}+sđ\stackrel\frown{EC}\right)=\dfrac{1}{2}sđ\stackrel\frown{AE}\) (2)

Từ (1) và (2) \(\Rightarrow\) \(\widehat{MAE}=\widehat{MDA}\)

Xét tam giác MAD có: \(\widehat{MAD}=\widehat{MDA}\) (cmt)

\(\Rightarrow\) \(\Delta\)MAD cân tại M (định lý tam giác cân)

\(\Rightarrow\) MA = MD (đpcm)

c, Xét đường tròn tâm (O) có: \(\widehat{AEB}\) và \(\widehat{ACB}\) là 2 góc nt chắn cung AB (gt)

\(\Rightarrow\) \(\widehat{AEB}=\widehat{ACB}\) (Hệ quả góc nt)

Xét tam giác ABE và tam giác ADC có:

\(\widehat{AEB}=\widehat{ACD}\) (cmt)

\(\widehat{BAE}=\widehat{DAC}\) (vì AE là p/g của tam giác ABC)

\(\Rightarrow\) \(\Delta ABE\) ~ \(\Delta ADC\) (gg)

\(\Rightarrow\) \(\dfrac{AB}{AD}=\dfrac{AE}{AC}\) (tỉ số đồng dạng)

\(\Rightarrow\) AD.AE = AC.AB (đpcm)

Chúc bn học tốt!

5 tháng 3 2019

bn lên ngạng hoặc và xem câu hỏi tương tự nha!

Nhớ k mk đấy nha!

thanks nhìu!

OK..OK..OK

6 tháng 8 2019

HS tự chứng minh

1 tháng 5 2020

a.Vì MA,MB là tiếp tuyến của (O)

→ˆMAO=ˆMBO=90o→MAO^=MBO^=90o

→M,A,O,B→M,A,O,B thuộc đường tròn đường kình OM

b.Vì MA,MBMA,MB là tiếp tuyến của (O)→MO⊥AB=I→MO⊥AB=I

→OA2=OI.OM→OA2=OI.OM

Vì OF⊥CM=EOF⊥CM=E

→ˆFAC=ˆFEC=90o→◊AFCE,◊MAEO→FAC^=FEC^=90o→◊AFCE,◊MAEO nội tiếp

→M,A,E,O,B→M,A,E,O,B cùng thuộc một đường tròn

→ˆFCA=ˆFEA=ˆFBO→FCA^=FEA^=FBO^

→FC→FC là tiếp tuyến của (O)