K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

câu 21

làm một con có vẻ rắc rối nhất ví dụ thôi

\(\dfrac{\sqrt{5+2\sqrt{6}}+\sqrt{8-2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}=\dfrac{\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}=\dfrac{\sqrt{2}+\sqrt{5}}{\sqrt{5}+\sqrt{2}}=1\)\(=\dfrac{\sqrt{2}+\sqrt{5}}{\sqrt{5}+\sqrt{2}}=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{3}y=\dfrac{7}{3}\\x-\dfrac{1}{2}y=-\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{6}y=\dfrac{5}{2}\\x+\dfrac{1}{3}y=\dfrac{7}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=\dfrac{4}{3}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2022

Lời giải:

Lấy PT(1) trừ PT(2) theo vế:

$\frac{y}{3}+\frac{y}{2}=\frac{7}{3}+\frac{1}{6}$

$\Leftrightarrow \frac{5}{6}y=\frac{5}{2}$
$\Leftrightarrow y=3$

$x=\frac{7}{3}-\frac{y}{3}=\frac{7}{3}-1=\frac{4}{3}$

21 tháng 9 2023

a) \(\dfrac{1}{\sqrt[]{x}-1}+\dfrac{1}{1+\sqrt[]{x}}+1\left(x\ge0;x\ne1\right)\)

\(=\dfrac{\sqrt[]{x}+1+\sqrt[]{x}-1+x-1}{\left(\sqrt[]{x}-1\right)\left(\sqrt[]{x}+1\right)}\)

\(=\dfrac{x+2\sqrt[]{x}-1}{x-1}\)

\(=\dfrac{x-1+2\sqrt[]{x}}{x-1}\)

\(=1+\dfrac{2\sqrt[]{x}}{x-1}\)

b) \(\dfrac{1}{\sqrt[]{x}+2}-\dfrac{2}{\sqrt[]{x}-2}-\dfrac{4}{4-x}\left(x\ge0;x\ne4\right)\)

\(=\dfrac{\sqrt[]{x}-2-2\left(\sqrt[]{x}+2\right)+4}{\left(\sqrt[]{x}+2\right)\left(\sqrt[]{x}-2\right)}\)

\(=\dfrac{\sqrt[]{x}-2-2\sqrt[]{x}-4+4}{\left(\sqrt[]{x}+2\right)\left(\sqrt[]{x}-2\right)}\)

\(=\dfrac{-\sqrt[]{x}-2}{\left(\sqrt[]{x}+2\right)\left(\sqrt[]{x}-2\right)}\)

\(=\dfrac{-\left(\sqrt[]{x}+2\right)}{\left(\sqrt[]{x}+2\right)\left(\sqrt[]{x}-2\right)}\)

\(=\dfrac{-1}{\sqrt[]{x}-2}\)

31 tháng 3 2022

Xét $\Delta MNH$ và $\Delta P$ ta có:

$\large \widehat{MHN}=\widehat{MPT}=90^o$ 

$\large \widehat{MNP}=\widehat{MTP}$(Hai góc cùng chắn cung $MP$)

Do đó $\large \Delta MNH \sim \Delta MTP$ $(g-g)$

Từ đó: $\frac{MN}{MT}=\frac{MH}{MP}\Leftrightarrow MN.MP=MH.MT$

Xét tứ giác $NQKP$ ta có: 

$\large \widehat{NQP}=\widehat{PKN}=90^o$

Mà hai góc này cùng chắn cung $NP$ 

Do đó tứ giác $NQKP$ là tứ giác nội tiếp

Suy ra: $\large \widehat{PKQ}+\widehat{PNQ}=180^o$ (Hai góc nội tiếp đối nhau)

Đồng thời ta có $\large \widehat{PKQ}+\widehat{MKQ}=180^o\Rightarrow \widehat{MNP}=\widehat{MTP}=\widehat{MKQ}$

Gọi $A$ là giao điểm của $QK$ và $MT$

Xét tứ giác $TPKA$ ta có:

$\large \widehat{MTP}+\widehat{PKQ}=\widehat{PKQ}+\widehat{MKQ}=180^o$

Mà hai góc này ở vị trí đối nhau nên tứ giác $TPAK$ là tứ giác nội tiếp 

$\large \Leftrightarrow \widehat{MPT}+\widehat{TAK}=180^o\Leftrightarrow \widehat{TAK}=180^o-\widehat{MPT}=90^o$

Do đó $MT$ vuông góc với $QK$

Hình: 

            undefined

29 tháng 3 2022

Dạ bài anh có nhầm lẫn gì kh ạ chứ khúc đầu e thấy hơi sai sai 😅😅

a: Thay x=2 vào (P),ta được:

y=2^2/2=2

2: Thay x=2 và y=2 vào (d), ta được:

m-1+2=2

=>m-1=0

=>m=1

 

2A:

a: 144

b: Không có 

c: \(\dfrac{8}{7}\)

d: \(\dfrac{1}{75}\)

28 tháng 8 2021

Em cảm ơn ạ🥰

b: Xét (A) có

CH,CE là tiếp tuyến

=>CH=CE

Xét (A) có

BH,BD là tiếp tuyến

=>BH=BD

BC=BH+CH

=>BC=BD+CE

c: Xét tứ giác AHCE có

góc AHC+góc AEC=180 độ

=>AHCE nội tiếp