Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-8x^3+6x^2+24x+9=0\)
\(\Leftrightarrow\left(x^4-6x^3-3x^2\right)+\left(-2x^3+12x^2+6x\right)+\left(-3x^2+18x+9\right)=0\)
\(\Leftrightarrow x^2\left(x^2-6x-3\right)-2x\left(x^2-6x-3\right)-3\left(x^2-6x-3\right)=0\)
\(\Leftrightarrow\left(x^2-6x-3\right)\left(x^2-2x-3\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)\left(x^2-6x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\x-3=0\\x^2-6x-3=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=3\\x=3+2\sqrt{3}\\x=3-2\sqrt{3}\end{array}\right.\)
Vậy tập nghiệm của phương trình : \(S=\left\{-1;3-2\sqrt{3};3;3+2\sqrt{3}\right\}\)
Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
DO đó; OM là tia phân giác của góc AOB
Xét ΔOAM vuông tại A có
\(\tan\widehat{AOM}=\dfrac{AM}{AO}=\sqrt{3}\)
nên \(\widehat{AOM}=60^0\)
=>\(\widehat{AOB}=120^0\)
Ta thừa nhận định lý f(x) chia hết cho x-a thì f(a) =0 ( mình đang vội khỏi chứng minh nhé, nếu thắc mắc phiền bạn xem SGK 9 nha)
Thay 1 vào x, ta có
f(x) =14+12+a=0
2+a=0 suy ra a=-2
Mình trình bày cho dễ hiểu nha
\(sina-\sqrt{3}cosa\)
\(=2\cdot\left(\frac{1}{2}sina-\frac{\sqrt{3}}{2}cosa\right)\)
\(=2\cdot\left(sinacos\frac{pi}{6}-cosasin\frac{pi}{6}\right)\)
\(=2\cdot sin\left(a-\frac{pi}{6}\right)\)
Ta có\(-1\le sin\left(a-\frac{pi}{6}\right)\le1\)
\(-2\le sin\left(a-\frac{pi}{6}\right)\le2\)
Vậy Min=-2
Max=2
có rảnh đâu mà giúp đang học onlai đây nè
ko giúp đc thì ns lmj