">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
18 tháng 8 2021

Gọi O là tâm của tam giác A'B'C'

ta có AO vuông góc với đáy nên AO là đường cao của lăng trụ

ta có : \(A'O=\frac{a}{\sqrt{3}}\)mà \(tan\widehat{AA'O}=tan60^0=\frac{AO}{A'O}\Rightarrow AO=A'Otan60^0=a\)

thể tích lăng trụ là : \(a\times\frac{a^2\sqrt{3}}{4}=\frac{a^3\sqrt{3}}{4}\)

26 tháng 2 2017

21. d[O,(P)]max => OA vuông góc (P) => n(P) =Vecto OA=(2; -1; 1)

=> (P):2x - y +z - 6 = 0. ĐA: D

22. D(x; 0; 0). AD = BC <=> (x-3)2 +16 = 25 => x = 0 v x = 6. ĐA: C

34. ĐA: A.

37. M --->Ox: A(3; 0; 0)

Oy: B(0; 1; 0)

Oz: C(0; 0;2)

Pt mp: x\3 + y\1+ z\2 = 1 <==> 2x + 6y + 3z - 6 = 0. ĐA: B

15 tháng 3 2017

Câu 31 thử ĐA

Câu 33: có công thức

Câu 35: Gọi A là giao điểm d và \(\Delta\) => A(1 +2t; t -1; -t )\(\in\) d

\(\overrightarrow{MA}=\left(2t-1;t-2;-t\right)\)\(\overrightarrow{MA}\perp\Delta\Rightarrow\overrightarrow{MA}.\overrightarrow{u_{\Delta}}=0\Leftrightarrow t=\dfrac{2}{3}\)=> ĐA: D

15 tháng 3 2017

Em cần hỏi c 34 í ạ. Dạ còn c 31 kh có cách giải ra hả anh

AH
Akai Haruma
Giáo viên
1 tháng 2 2017

Lời giải:

Bài 16

Khai triển:

\(F(x)=\int \frac{(x-1)^3}{2x^2}dx=\int \frac{x^3-3x^2+3x-1}{2x^2}dx=\int \frac{x}{2}dx-\int\frac{3}{2}dx+\int\frac{3}{2x}dx-\int\frac{dx}{2x^2}\)

Cụ thể có:

\(\int \frac{x}{2}dx=\frac{x^2}{4};\int\frac{3}{2}dx=\frac{3x}{2};\int\frac{3dx}{2x}=\frac{3}{2}\ln|x|;\int\frac{dx}{2x^2}=-\frac{1}{2x}\)

Do đó \(F(x)=\frac{x^2}{4}-\frac{3x}{2}+\frac{3\ln|x|}{2}+\frac{1}{2x}+c\)

Phương án D.

Bài 18:

\(\int f(x)dx=\sin 2x\cos 2x\Rightarrow f(x)=(\sin 2x\cos 2x)'\)

\(\Leftrightarrow f(x)=(\frac{\sin 4x}{2})'=2\cos 4x\)

(không có đáp án đúng?)

Câu 36

Đặt \(\left\{\begin{matrix} u=\ln (\ln x)\\ dv=\frac{dx}{x}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{1}{x\ln x}dx\\ v=\int\frac{dx}{x}=\ln x\end{matrix}\right.\)

Khi đó \(I=\ln x\ln(\ln x)-\int\ln x\frac{1}{x\ln x}dx=\ln x\ln(\ lnx)-\int\frac{dx}{x}=\ln x\ln (\ln x)-\ln x+c\)

Đáp án C

AH
Akai Haruma
Giáo viên
12 tháng 8 2017

Lời giải:

Bài 30:

Ta có \(y=x^4-2mx^2\Rightarrow y'=4x^3-4mx\)

Để ĐTHS có 3 điểm cực trị thì \(y'=4x^3-4mx=0\) phải có ba nghiệm phân biệt

\(\Leftrightarrow x(x^2-m)=0\) có ba nghiệm phân biệt. Do đó \(m>0\)

Khi đó, gọi ba điểm cực trị lần lượt là:

\(A(0,0);B(\sqrt{m},-m^2);C(-\sqrt{m},-m^2)\)

Từ đây, ta viết được PTĐT $BC$ là: \(y=-m^2\)

Sử dụng công thức tính khoảng cách từ 1 điểm đến đường thẳng:

\(d(A,BC)=\frac{|m^2|}{\sqrt{1^2+0^2}}=m^2\)

\(BC=\sqrt{(\sqrt{m}--\sqrt{m})^2+(-m^2+m^2)^2}=2\sqrt{m}\)

\(\Rightarrow S_{ABC}=\frac{d(A,BC).BC}{2}=m^2\sqrt{m}<1\). Mà \(m>0\) nên

\(m^2\sqrt{m}<1\Leftrightarrow 0<\sqrt{m^5}<1\Leftrightarrow 0< m<1\).

Đáp án D.

AH
Akai Haruma
Giáo viên
12 tháng 8 2017

Bài 31:

Đề bài sai rồi nhé, hàm thứ hai phải là \(y=x^3-3x^2-m+2\)

PT hoành độ giao điểm:

\(x^3-3x^2-m+2+mx=0\)

\(\Leftrightarrow (x-1)[x^2-2x+(m-2)]=0\)

PT trên có một nghiệm là $1$. Để hai đths cắt nhau tại ba điểm phân biệt thì PT \(x^2-2x+(m-2)=0(1)\) phải có hai nghiệm pb khác $1$

\(\Rightarrow \left\{\begin{matrix} 1-2-2+m\neq 0\\ \Delta'=3-m>0\end{matrix}\right.\Rightarrow m<3\)

Nếu $x_1,x_2$ là hai nghiệm của $(1)$ thì áp dụng định lý Viete ta có:

\(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=m-2\end{matrix}\right.\)

Như vậy, độ dài các đoạn $AB,BC,AC$ nằm trong các giá trị:

\(\left\{\begin{matrix} |x_1-1|\sqrt{m^2+1}\\ |x_2-1|\sqrt{m^2+1}\\ |x_1-x_2|\sqrt{m^2+1}\end{matrix}\right.\)

Ta thấy \(x_1+x_2=2\Rightarrow x_1-1=1-x_2\Rightarrow |x_1-1|=|x_2-1|\)

Do đó \(|x_1-1|\sqrt{m^2+1}=|x_2-1|\sqrt{m^2+1}\), tức là luôn tồn tại hai đoạn thẳng nối hai giao điểm có độ dài bằng nhau (thỏa mãn đkđb) , với mọi $m$ nằm trong khoảng xác định, hay \(m<3\)

Đáp án D.

8 tháng 8 2017

y=x^3 - 3x^2 - 9x + 1

Y'=3x^2 - 6x - 9

y"=6x -6 ; y"=0

=>x=1; y=-10

=>C

AH
Akai Haruma
Giáo viên
25 tháng 8 2017

Bài 18:

Theo định lý Pitago:

\(SA=\sqrt{SB^2-AB^2}=2a\)

Do đó, \(V_{S.ABC}=\frac{1}{3}.SA.S_{ABC}=\frac{1}{3}.2a.\frac{a.5a}{2}=\frac{5a^3}{3}\)

Đáp án D.

Bài 19:

\(SA\perp (ABCD)\Rightarrow \angle (SB,(ABCD))=\angle (SB,AB)=\angle SBA=60^0\)

Suy ra \(\frac{SA}{AB}=\frac{SA}{a}=\tan SBA=\sqrt{3}\Rightarrow SA=\sqrt{3}a\)

\(\Rightarrow V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}\sqrt{3}a.a.3a=\sqrt{3}a^3\)

Đáp án B

NV
21 tháng 9 2021

1.

\(y'=6x^2+6\left(m-1\right)x+6\left(m-2\right)=6\left(x+1\right)\left(x+m-2\right)\)

\(y'=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-m+2\end{matrix}\right.\)

Phương trình nghịch biến trên đoạn có độ dài lớn hơn 3 khi:

\(\left|-1-\left(-m+2\right)\right|>3\)

\(\Leftrightarrow\left|m-3\right|>3\Rightarrow\left[{}\begin{matrix}m>6\\m< 0\end{matrix}\right.\)

2.

\(y'=-3x^2+6x+m-1\)

\(\Delta'=9+3\left(m-1\right)>0\Rightarrow m>-2\)

Gọi \(x_1;x_2\) là 1 nghiệm của pt \(-3x^2+6x+m-1=0\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=\dfrac{-m+1}{3}\end{matrix}\right.\)

Hàm đồng biến trên đoạn có độ dài lớn hơn 1 khi:

\(\left|x_1-x_2\right|>1\)

\(\Leftrightarrow\left(x_1-x_2\right)^2>1\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2>1\)

\(\Leftrightarrow4-\dfrac{-4m+4}{3}>1\)

\(\Rightarrow m>-\dfrac{5}{4}\) \(\Rightarrow m=-1\)

Có đúng 1 giá trị nguyên âm của m thỏa mãn

NV
21 tháng 9 2021

3.

\(y'=x^2+6\left(m-1\right)x+9\)

\(\Delta'=9\left(m-1\right)^2-9>0\Rightarrow\left[{}\begin{matrix}m>1\\m< 0\end{matrix}\right.\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-6\left(m-1\right)\\x_1x_2=9\end{matrix}\right.\)

\(\left|x_1-x_2\right|=6\sqrt{3}\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=108\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=108\)

\(\Leftrightarrow36\left(m-1\right)^2-36=108\)

\(\Rightarrow\left(m-1\right)^2=4\Rightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)

Có 1 giá trị nguyên âm của m thỏa mãn