Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo biến cố A ta có các mặt có thể ra là 6 chấm nên xác suất ra là: P(A) = \(\frac{1}{6}\)
b) Theo biến cố B ta có các mặt thỏa mãn nhỏ hơn 7 là tất cả các mặt của xúc xắc nên B là biến cố chắc chắn. Do đó, P(B) = 1
- Biến cố A là biến cố ngẫu nhiên vì nếu ta gieo được 2 lần cùng ra 1 thì tích của chúng sẽ không lớn hơn 1.
- Biến cố B là biến cố chắc chắn vì mặt có số chấm ít nhất là 1 nếu ta gieo 2 lần thì ít nhất chúng ta có kết quả là 2 nên tổng sẽ lớn hơn 1.
- Biến cố C là biến cố không thể do các mặt của xúc xắc là 1,2,3,4,5,6 mà trong các số này không có tích 2 số nào là 7.
- Biến cố D là biến cố ngẫu nhiên vì các mặt của xúc xắc là 1,2,3,4,5,6 mà trong các số này có rất nhiều số có tổng là 7 ví dụ như 1 và 6, 2 và 5 nhưng cũng có nhiều cặp số không có tổng là 7 như 3 và 1, 1 và 2.
a: \(\Omega=\left\{1;2;3;4;5;6\right\}\)
=>n(omega)=6
A={1;4}
=>n(A)=2
=>P(A)=2/6=1/3
b: B={3;4;5;6}
=>n(B)=4
=>P(B)=4/6=2/3
a: A={2}
omega={1;2;3;4;5;6}
=>P(A)=1/6
b: B={2;4;6}
=>n(B)=3
=>P(B)=3/6=1/2
c: C={3;4;5;6}
=>n(C)=4
=>P(C)=4/6=2/3
a) Biến cố A : vì trong xúc xắc có 1 mặt có 4 chấm trên tổng 6 mặt nên xắc suất gieo ra mặt 4 chấm là \(\dfrac{1}{6}\)
b) Biến cố B : vì trong các mặt chỉ có 5 chấm là chia hết cho 5 nên xác suất gieo ra mặt 5 chấm là là \(\dfrac{1}{6}\)
c) Biến cố C : vì số chấm trong mỗi mặt của xúc xắc là từ 1 đến 6 chấm nên biến cố C là biến cố không thể. Do đó, xác suất xảy ra biến cố C là 0.
Tập hợp A gồm các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc.
A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}
a) Trong các số 1, 2, 3, 4, 5, 6, có hai số là hợp số là: 4, 6.
Vậy có hai kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là hợp số” là: mặt 4 chấm, mặt 6 chấm (lấy ra từ tập hợp A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}).
b) Trong các số 1, 2, 3, 4, 5, 6, có hai số chia 3 dư 1 là: 1, 4.
Vậy có hai kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chia 3 dư 1” là: mặt 1 chấm, mặt 4 chấm (lấy ra từ tập hợp A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}).
c) Trong các số 1, 2, 3, 4, 5, 6, có ba số là ước của 4 là: 1, 2, 4.
Vậy có ba kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là ước của 4” là: mặt 1 chấm, mặt 2 chấm, mặt 4 chấm (lấy ra từ tập hợp A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}).
Tập hợp gồm các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc là:
A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}.
Số phần tử của tập hợp A là 6.
a) Có bốn kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là ước của 6” là: mặt 1 chấm, mặt 2 chấm, mặt 3 chấm, mặt 6 chấm.
Vì thế, xác suất của biến cố trên là \(\dfrac{4}{6} = \dfrac{2}{3}\).
b) Có hai kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chia 3 dư 2” là: mặt 2 chấm, mặt 5 chấm.
Vì thế, xác suất của biến cố trên là \(\dfrac{2}{6} = \dfrac{1}{3}\).
Tập hợp gồm các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc là:
A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}.
Số phần tử của tập hợp A là 6.
a) Có ba kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số nguyên tố” là: mặt 2 chấm, mặt 3 chấm, mặt 5 chấm.
Vì thế, xác suất của biến cố trên là \(\dfrac{3}{6} = \dfrac{1}{2}\).
b) Có hai kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chia 4 dư 1” là: mặt 1 chấm, mặt 5 chấm.
Vì thế, xác suất của biến cố trên là \(\dfrac{2}{6} = \dfrac{1}{3}\).
a, Biến cố chắc chắn là biến cố B
Biến cố không thể là C
Biến cố ngẫu nhiên là A
b, Biến cố ngẫu nhiên là : A : gieo được mặt có số chấm lớn hơn 5
\(\Rightarrow A=\left\{6\right\}\) => có 1 khả năng
Gieo ngẫu nhiên xúc sắc có 6 khả năng xảy ra
=> Xác xuất là : \(P\left(A\right)=\dfrac{1}{6}\)