K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 12 2021

Xác suất:

a. \(\dfrac{3}{6}.\dfrac{3}{6}=\dfrac{1}{4}\)

b. \(\dfrac{6}{36}=\dfrac{1}{6}\)

c. Xác suất mặt 6 chấm ko xuất hiện lần nào: \(\dfrac{5}{6}.\dfrac{5}{6}=\dfrac{25}{36}\)

Xác suất mặt 6 xuất hiện ít nhất 1 lần: \(1-\dfrac{25}{36}=\dfrac{11}{36}\)

d. Các trường hợp tổng 2 mặt lớn hơn hoặc bằng 10: (6;4), (4;6); (5;5); (5;6);(6;5);(6;6) có 6 khả năng

\(\Rightarrow36-6=30\) khả năng tổng số chấm bé hơn 10

Xác suất: \(\dfrac{30}{36}=\dfrac{5}{6}\)

18 tháng 5 2017

Rõ ràng \(\Omega=\left\{\left(i;j\right):1\le i,j\le6\right\}\)

Kí hiệu :

\(A_1:\) "Lần đầu xuất hiện mặt 1 chấm"

\(B_1:\) "Lần thứ hai xuất hiện mặt 1 chấm"

\(C:\) " Tổng số chấm là 6"

\(D:\) "Mặt 1 chấm xuất hiện ít nhất một lần"

a) Ta có \(C=\left\{\left(1,5\right),\left(5,1\right),\left(2,4\right),\left(4,2\right)\left(3,3\right)\right\},P\left(C\right)=\dfrac{5}{36}\)

b) Ta có \(A_1,B_1\) độc lập và \(D=A_1\cup B_1\) nên

\(P\left(D\right)=P\left(A_1\right)+P\left(B_1\right)-P\left(A_1B_1\right)\)

\(=\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{6}.\dfrac{1}{6}=\dfrac{11}{36}\)

NV
20 tháng 12 2020

a. Có 3 mặt nguyên tố: 2,3,5 nên xác suất xuất hiện số nguyên tố ở mỗi lần gieo là \(\dfrac{3}{6}=\dfrac{1}{2}\)

Xác suất 2 lần đều xuất hiện số nguyên tố: \(\dfrac{1}{2}.\dfrac{1}{2}=\dfrac{1}{4}\)

b. Xác suất để lần 1 xuất hiện mặt 6 chấm: \(\dfrac{1}{6}\)

c. Xác suất ít nhất 1 lần xuất hiện mặt 6 chấm: \(\dfrac{2.6-1}{36}=\dfrac{11}{36}\)

d. Xác suất ko lần nào xuất hiện 6 chấm: \(1-\dfrac{11}{36}=\dfrac{25}{36}\)

6 tháng 1 2019

a. Không gian mẫu gồm 36 kết quả đồng khả năng xuất hiện, được mô tả như sau:

Ta có: Ω = {(i, j) | 1 ≤ i , j ≤ 6}, trong đó i, j lần lượt là số chấm xuất hiện trong lần gieo thứ nhất và thứ hai, n(Ω) = 36.

b. A = {(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)} ⇒ n(A) = 6

Giải bài 1 trang 74 sgk Đại số 11 | Để học tốt Toán 11

B = {(1, 5), (2, 5), (3, 5), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 5)}

Giải bài 1 trang 74 sgk Đại số 11 | Để học tốt Toán 11

10 tháng 12 2017

Đáp án C

Nhắc lại: xác suất của biến cố A được định nghĩa lHvZWrf38hNm.png, với kdOCL5I6SFtL.png là số phần tử của A, 9QjXDbE4BDKV.png là số các kết quả có thể xảy ra của phép thử. Số phần tử của không gian mẫu là dTwKukBqlmsq.png.

Gọi A là biến cố bp0iurpmmqJ9.png, ta có

A={(1;1) ;..(1;6); (2;2);..;(2;6);(3;3);..; (3;6); (4;5); (4;6)}

Suy ra uG9HgGffGN9z.png. Vậy xác suất để phương trình bậc hai A6FPTdz7fXtR.png vô nghiệm là 17/36.

20 tháng 2 2017

Đáp án là A.

• Số phần tử của không gian mẫu là n ( Ω )   = 36 .

Gọi A là biến cố thỏa yêu cầu bài toán.

Phương trình x2 + bx + c = 0 có nghiệm khi và chỉ khi ∆   =   b 2   -   4 a c   ≥ 0 ⇔ b 2   ≥   4 a c .

Xét bảng kết quả (L – loại, không thỏa ; N – nhận, thỏa yêu cầu đề bài)

19 tháng 1 2019

Chọn C

Số phần tử của không gian mẫu của phép thử gieo một con súc sắc hai lần liên tiếp là 36.

Để phương trình bậc hai  x 2 + bx + c = 0 có nghiệm là  (*) với 

Gọi A là biến cố chọn cặp số (b;c) thỏa mãn trong đó 

Khi c = 1: Các giá trị của b thỏa mãn điều kiện (*) là: 2,3,4,5,6. Suy ra có: 5 cặp (b,c).

Khi c = 2: Các giá trị của b thỏa mãn điều kiện (*) là: 3,4,5,6. Suy ra có: 4 cặp (b,c).

Khi c = 3: Các giá trị của b thỏa mãn điều kiện (*) là: 4,5,6. Suy ra có: 3 cặp (b,c).

Khi c = 4: Các giá trị của b thỏa mãn điều kiện (*) là: 4,5,6. Suy ra có: 3 cặp (b,c).

Khi c = 5: Các giá trị của b thỏa mãn điều kiện (*) là: 5,6. Suy ra có: 2 cặp (b,c).

Khi c = 6: Các giá trị của b thỏa mãn điều kiện (*) là: 5,6. Suy ra có: 2 cặp (b,c).

Vậy, số cặp (b,c) thỏa mãn điều kiện (*) là 19

29 tháng 8 2018

Đáp án B

Phương pháp: Xác suất của biến cố A là n A n Ω trong đó nA là số khả năng mà biến cố A có thể xảy ra, n Ω  là tất cả các khả năng có thể xảy ra.

Cách giải:  x 2 + b x + c x   +   1   =   0 (*)

Để phương trình (*) vô nghiệm thì phương trình x2 + bx + c = 0 (**) có 2 trường hợp xảy ra:

TH1: PT (**) có 1 nghiệm x = -1 

TH2: PT (**) vô nghiệm 

Vì c là số chấm xuất hiện ở lần gieo thứ 2 nên c ≤ 6   ⇒ b ≤ 2 6   ≈ 4 , 9 .

Mà b là số chấm xuất hiện ở lần giao đầu nên  b   ∈ 1 ; 2 ; 3 ; 4

Với b = 1  ta có: c > 1 4   ⇒ c ∈ 1 ; 2 ; 3 ; 4 ; 5 ; 6  có 6 cách chọn c.

Với b = 2 ta có: c   >   1 ⇒ c ∈ 2 ; 3 ; 4 ; 5 ; 6 có 5 cách chọn c.

Với b = 3 ta có: c   >   9 4   ⇒ c ∈ 3 ; 4 ; 5 ; 6  có 4 cách chọn c.

Với b = 4 ta có: c > 4 => c ∈   5 ; 6 có 2 cách chọn c.

Do đó có 6+5+4+2 = 17 cách chọn (b;c) để phương trình (**) vô nghiệm.

Gieo con súc sắc 2 lần nên số phần tử của không gian mẫu  n Ω   =   6 . 6   =   36

Vậy xác suất đề phương trình (*) vô nghiệm là  1 + 17 36   =   1 2

1 tháng 2 2019

a) Ω = {(i, j, k) |1 ≤ i, j, k ≤ 6} gồm các chỉnh hợp chập 3 của 6 (số chấm).

Giải sách bài tập Toán 11 | Giải sbt Toán 11

30 tháng 7 2018

Đáp án B

Phương pháp:

Phương trình a x 2   +   b x   +   c   =   0 ( a ≠ 0 )  có nghiệm

⇔ ∆ ≥ 0

Gọi A là biến cố: 

"Phương trình  a x 2   +   b x   +   c   = 0 có nghiệm"