Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số lần xuất hiện mặt có số chấm lẻ là:
\(21 + 8 + 18 = 47\) (lần)
Xác suất thực nghiệm của biến cố “Gieo được mặt có số chấm là số lẻ” là \(\frac{{47}}{{120}}\).
Số kết quả có thể xảy ra là 6 vì con xúc xắc có 6 mặt.
Số kết quả thuận lời của \(A\) là 2 (ứng với mặt 3 chấm và mặt 6 châm).
Xác suất của biến cố \(A\) là:
\(P\left( A \right) = \frac{2}{6} = \frac{1}{3}\).
omega={1;2;3;4;5;6}
=>n(omega)=6
A={1;2;3;4}
=>n(A)=4
=>P(A)=4/6=2/3
Không gian mẫu: có 6 khả năng xảy ra
Có 4 biến cố thuận lợi là số chấm bằng 1,2,3,4
Do đó xác suất là: \(P=\dfrac{4}{6}=\dfrac{2}{3}\)
Đáp án đúng là A
Ta có: \(28 = 4.7.1 = 2.2.7\).
Qua cách phân tích trên ta thấy để xuất hiện tích 3 con xúc xắc là 28 thì phải có 1 con có mặt 7. Mà con xúc xắc không có mặt 7. Do đó, biến cố trên không xảy ra.
Vậy xác suất của biến cố “Tích số chấm xuất hiện trên ba con xúc xắc bằng 28” là 0.
Đáp án dúng là B
Xác xuất lí thuyết khi gieo một con xúc xắc để xuất hiện mặt 6 chấm là \(\frac{1}{6}\).
Gọi số lần xuất hiện mặt 6 khi gieo con xúc xắc là \(N\).
Xác suất thực nghiệm của việc gieo con xúc xắc 1000 lần là \(\frac{N}{{1000}}\).
Vì số lần gieo là lớn nên \(\frac{N}{{1000}} \approx \frac{1}{6} \Rightarrow N \approx 1000:6 \approx 167\).
Vậy số lần xuất hiện mặt 6 chấm trong 1000 lần gieo đó có khả năng lớn nhất thuộc vào tập hợp {101; 101; …; 200}.
Xác suất thực nghiệm của biến cố “Mặt xuất hiện của xúc xắc là mặt 2 chấm” là `4/30=2/15`
a) Xác suất thực nghiệm của biến cố là: \(\frac{{27}}{{50}}\).
b) Tung đồng xu 45 lần, có 24 lần xuất hiện mặt N nên số lần xuất hiện mặt S là:
\(45 - 24 = 21\) (lần)
Xác suất thực nghiệm của biến cố là: \(\frac{{21}}{{45}} = \frac{7}{{15}}\).
Các kết quả thuận lợi của biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chẵn” là: Mặt 2 chấm, mặt 4 chấm, mặt 6 chấm.
Số kết quả thuận lợi là 3.
Xác suất của biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chẵn” là \(\frac{3}{6} = \frac{1}{2}\).
Khi số lần gieo xúc xắc càng lớn thì xác suất thực nghiệm của biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chẵn” ngày càng gần với \(\frac{1}{2}\).
8u