Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3x4 - 13x3 + 16x2 - 13x + 3 = 0
(x - 3)(3x - 1)(x2 - x + 1) = 0
nhưng vì x2 - x + 1 # 0 nên:
x - 3 = 0 hoặc 3x - 1 = 0
x = 0 + 3 3x = 0 + 1
x = 3 3x = 1
x = 1/3
b) 6x4 + 5x3 - 38x2 + 5x + 6 = 0
(x - 2)(x + 3)(3x + 1)(2x - 1) = 0
x - 2 = 0 hoặc x + 3 = 0 hoặc 3x + 1 = 0 hoặc 2x - 1 = 0
x = 0 + 2 x = 0 - 3 3x = 0 - 1 2x = 0 + 1
x = 2 x = -3 3x = -1 2x = 1
x = -1/3 x = 1/2
a, x4 - 13x2 + 36 = 0
Đặt : x2 = t , t > 0 , ta có :
t2 - 13t + 36 = 0 \(\Leftrightarrow\) t = 9 hay t = 4
- Với t = 9 \(\Rightarrow\) x2 = 9 \(\Rightarrow\) x = + 3
- Với t = 4 \(\Rightarrow\) x2 = 4 \(\Rightarrow\) x = + 2
Vậy phương trình có 4 nghiệm
x1 = 3 ; x2 = -3 ; x3 = 2 ; x4 = -2
b, 3x4 + 7x2 - 10 =0
Đặt : x2 = t , t > 0 , ta có :
3t2 + 7t - 10 = 0
\(\Leftrightarrow\) t = 1 hay t = -\(\frac{10}{3}\) (loại )
- Với t = 1 \(\Rightarrow\) x2 = 1 \(\Rightarrow\) x = +1
Phương trình có hai nghiệm là :
x1 = 1 ; x2 = -1
a. Ta có: x2-11=0
⇌ x2=11
⇌\(\left[{}\begin{matrix}x=\sqrt{11}\\x=-\sqrt{11}\end{matrix}\right.\)
b.Ta có: x2-2\(\sqrt{13}\)x+\(\sqrt{13}\)=0
⇌(x-\(\sqrt{13}\))2=0
⇌ x-\(\sqrt{13}\)=0
⇌ x=\(\sqrt{13}\)
c. Ta có : x2-9x+14=0
⇌ (x-7)(x-2)=0
⇌\(\left[{}\begin{matrix}x-7=0\\z-2=0\end{matrix}\right.\)⇌\(\left[{}\begin{matrix}x=7\\x=2\end{matrix}\right.\)
d.Ta có \(\sqrt{x}\)-6=13
⇌\(\sqrt{x}\)=19
⇌x = 361
e.Ta có: \(\sqrt{x}\)+9=3
Vì \(\sqrt{x}\)≥0∀x⇒\(\sqrt{x}\)+9≥9
⇒ ptvn
f.Ta có:\(\sqrt{x^2}\)-2x+4=x-1
⇌ |x|-3x-5=0(*)
TH1: x≥0
⇒ pt(*) ⇌ x-3x+5=0⇌-2x-5=0⇒x=\(\dfrac{5}{2}\)(t/m)
TH2: x<0
⇒ pt(*) ⇌ -x-3x+5=0⇌-4x+5=0⇒x=\(\dfrac{5}{4}\)(l)
Vậy x=\(\dfrac{5}{2}\)là nghiệm của phương trình
Bài này đơn giản thôi.
Đặt f(x) = 6x4 - 18x3 + 23x2 - 13x + 4 > 0
\(f\left(x\right)=\frac{47}{54}+\frac{1}{54}\left(18x^2-27x+13\right)^2+\frac{5}{6}x^2\)
Thao tác trên Maple (vào thống kê hỏi đáp xem ảnh)
Còn cách phân tích bằng tay thì qua VMF có bài viết của mình nói về điều này nhé.
Nhẩm nghiệm, thấy x=-1 thỉ P=0, phân tích đa thức dần thành nhân tử
P(x)=\(\left(x+1\right)\left(2x^3-9x^2+7x+6\right)\)
=\(2x^{^{ }4}+2x^3-9x^3-9x^2+7x^2+7x+6x+6\)
=\(\left(x+1\right)\left(x-2\right)\left(2x^2-5x-3\right)\)
=\(\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-1\right)\)
Đây là 1 tích trong đó có 3 số nguyên lien tiep.
Trong 3 so nguyen lien tiep co it nhat 1 so chan va 1 so chia het cho 3
=> h cua chung chia het cho 2x3=6.
Vay P chia het cho 6.
\(2x^4-13x^3+24x^2-13x+2=0\)
\(\Leftrightarrow2x^4-8x^3+2x^2-5x^3+20x^2-5x+2x^2-8x+2=0\)
\(\Leftrightarrow2x^2\left(x^2-4x+1\right)-5x\left(x^2-4x+1\right)+2\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow2x^2\left(x^2-4x+1\right)-5x\left(x^2-4x+1\right)+2\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\left(2x^2-5x+2\right)\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\left(2x^2-x-4x+2\right)\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\left[x\left(2x-1\right)-2\left(2x-1\right)\right]\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)\left(x^2-4x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2;x=\frac{1}{2}\\x=\frac{4\pm\sqrt{12}}{2}\end{cases}}\)
bạn có thể giair theo cacsh đối xứng đươcj ko cái mà chia cả 2 vế cho x2 rồi đặt ý làm phuền bạn