K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2019

ĐKXĐ: \(x\ge4\)

\(\hept{\begin{cases}\sqrt{x-1}+\sqrt{y^2-2y+4}=4\\\sqrt{x-4}+y=3\left(1\right)\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=4-\sqrt{y^2-2y+4}\\\sqrt{x-4}=3-y\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(\sqrt{x-1}\right)^2=\left(4-\sqrt{y^2-2y+4}\right)^2\\\left(\sqrt{x-4}\right)^2=\left(3-y\right)^2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-1=16-8\sqrt{y^2-2y+4}+y^2-2y+4\\x-4=y^2-6y+9\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=-8\sqrt{y^2-2y+4}+y^2-2y+21\\x=y^2-6y+13\end{cases}}\)

\(\Rightarrow y^2-2y+21-8\sqrt{y^2-2y+4}=y^2-6y+13\)

\(\Leftrightarrow4y+8=8\sqrt{y^2-2y+4}\)\(\Leftrightarrow y+2=2\sqrt{y^2-2y+4}\)

\(\Rightarrow\left(y+2\right)^2=\left(2\sqrt{y^2-2y+4}\right)^2\Leftrightarrow y^2+4y+4=4y^2-8y+16\)

\(\Leftrightarrow3y^2-12y+12=0\Leftrightarrow y^2-4y+4=0\Leftrightarrow\left(y-2\right)^2=0\Leftrightarrow y-2=0\Leftrightarrow y=2\) 

Thay y=2 vào (1) suy ra \(\sqrt{x-4}+2=3\Leftrightarrow\sqrt{x-4}=1\Leftrightarrow x-4=1\Leftrightarrow x=5\left(tmdk\right)\)

Vậy (x;y)=(5;2)

1 tháng 8 2020

ĐKXĐ : \(y\ge0\) 

P/t (1) \(\Leftrightarrow x^2\left(x-y\right)-\left(x-y\right)=0\) \(\Leftrightarrow\left(x^2-1\right)\left(x-y\right)=0\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\x-y=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm1\\x=y\end{cases}}\)

Xét : \(x=\pm1\) . Với x = 1 và với x = -1 thay vào p/t (2) tìm y rồi đối chiếu ĐK

Xét : \(x=y\) Mà \(y\ge0\) nên \(x\ge0\Rightarrow\left|x\right|=x\)

Khi đó , p/t (2) \(\Leftrightarrow\sqrt{2\left(x^4+1\right)}-5\sqrt{\left|x\right|}+\sqrt{x}+2=0\)

\(\Leftrightarrow\sqrt{2\left(x^4+1\right)}-5\sqrt{x}+\sqrt{x}+2=0\)

\(\Leftrightarrow\sqrt{2\left(x^4+1\right)}-4\sqrt{x}+2=0\) 

\(\Leftrightarrow\sqrt{2\left(x^4+1\right)}=4\sqrt{x}-2\)  (1) 

Vì x >= 0 nên AD BĐT Cô - si ta được : \(x^4+1\ge2x^2\Rightarrow\sqrt{2\left(x^4+1\right)}\ge\sqrt{2.2x^2}=2x\) ( vì x >= 0 )    (2) 

Với x >= 0 ta luôn có : \(\left(\sqrt{x}-1\right)^2\ge0\Leftrightarrow x-2\sqrt{x}+1\ge0\Leftrightarrow2x-4\sqrt{x}+2\ge0\)

\(\Leftrightarrow4\sqrt{x}-2\le2x\) . (3)

Từ (1) ; (2) và (3) suy ra : \(VT=VP=2x\)

Dấu " = " xảy ra <=> x = 1 (t/m)

Mà x = y suy ra : y = 1 (t/m)

Vậy ...

20 tháng 2 2019

a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)

b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)

c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)

\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)

e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn

14 tháng 3 2020

Phương trình thứ hai tương đương: \(5x^4-10x^3y+x^2-2xy=0\Leftrightarrow5x^3\left(x-2y\right)+x\left(x-2y\right)=0\Leftrightarrow x\left(x-2y\right)\left(5x^2+1\right)=0\)

Vì \(5x^2+1>0\)nên \(x\left(x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2y\end{cases}}\)

Đến đây bạn tự giải tiếp