Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT (1) <=> x = 3y + 3. Thay x = 3y + 3 vào PT (2) ta có: \(\left(3y+3\right)^2+y^2-2\left(3y+3\right)-2y-9=0\Leftrightarrow10y^2+10y-6=0\Leftrightarrow y=\frac{-5+\sqrt{85}}{10}\)hoặc \(y=\frac{-5-\sqrt{85}}{10}\)
- Nếu \(y=\frac{-5+\sqrt{85}}{10}\) \(\Rightarrow x=3y+3=\frac{15+3\sqrt{85}}{10}\)
- Nếu \(y=\frac{-5-\sqrt{85}}{10}\Rightarrow x=3y+3=\frac{15-3\sqrt{85}}{10}\)
2 ẩn nỗi j 3 ẩn chứ 1.cộng vế 2.trừ vế 3.thay 4.nhân vế pt.... bn thử từng pp 1 ra nhé
a, Thay m=3 vào hpt ta có :
\(\left\{{}\begin{matrix}2x+3y=3\\-5x+y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=3\\-15x+3y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=3\\17x=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{4}{17}\\y=\frac{43}{51}\end{matrix}\right.\)
ĐK: \(x\ge\frac{1}{2}\)
\(\hept{\begin{cases}x\left(2x-2y-1\right)=3\left(y+2\right)\left(1\right)\\3y+6\sqrt{2x-1}=y^2-x+23\left(2\right)\end{cases}}\)
pt (1) <=> \(2x^2-2xy-x-3y-6=0\)
<=> \(2x^2-x\left(2y+1\right)-\left(3y+6\right)=0\)
có \(\Delta=\left(2y+1\right)^2+4\left(3y+6\right)=4y^2+28y+49=\left(2y+7\right)^2\)
=> (1) có hai nghiệm: \(\orbr{\begin{cases}x_1=\frac{\left(2y+1\right)-\left(2y+7\right)}{4}=-\frac{3}{2}\left(loai\right)\\x_2=\frac{\left(2y+1\right)+\left(2y+7\right)}{4}=y+2\end{cases}}\)
+) Với \(x=y+2\) thế vào (2) ta có:
\(3y+6\sqrt{2\left(y+2\right)-1}=y^2-\left(y+2\right)+23\)
<=> \(6\sqrt{2y+3}=y^2-4y+21\)
ĐK: \(y\ge-\frac{3}{2}\)
\(6\sqrt{2y+3}=y^2-4y+21\)
<=> \(6\sqrt{2y+3}-2y-12=y^2-6y+9\)
<=> \(\frac{2\left(9\left(2y+3\right)-\left(y+6\right)^2\right)}{3\sqrt{2y+3}+y+6}-\left(y-3\right)^2=0\)
<=> \(\frac{-2\left(y-3\right)^2}{3\sqrt{2y+3}+y+6}-\left(y-3\right)^2=0\)
<=> \(\left(y-3\right)^2\left(\frac{-2}{3\sqrt{2y+3}+y+6}-1\right)=0\)
<=> y - 3 = 0
<=> y = 3 thỏa mãn
khi đó x = y + 2 = 3 + 2 = 5 thỏa mãn
Kết luận:...
Đặt x/x+1=a; y/y+1=b
Hệ sẽ là 2a+b=căn 2 và a+3b=-1
=>2a+b=căn 2 và 2a+6b=-2
=>-5b=căn 2+2 và a=-1-3b
\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{-\sqrt{2}-2}{5}\\a=-1-3\cdot\dfrac{-\sqrt{2}-2}{3}=-1+\sqrt{2}+2=1+\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{y}{y+1}=\dfrac{-2-\sqrt{2}}{5}\\\dfrac{x}{x+1}=1+\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{y+1-1}{y+1}=\dfrac{-2-\sqrt{2}}{5}\\\dfrac{x+1-1}{x+1}=1+\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y+1}=1-\dfrac{-2-\sqrt{2}}{5}=1+\dfrac{2+\sqrt{2}}{5}=\dfrac{7+\sqrt{2}}{5}\\\dfrac{1}{x+1}=1-1-\sqrt{2}=-\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{7+\sqrt{2}}-1=\dfrac{5-7-\sqrt{2}}{7+\sqrt{2}}=\dfrac{-2-\sqrt{2}}{7+\sqrt{2}}\\x=-\dfrac{1}{\sqrt{2}}-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2x+3y=1\\x-y=3\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2x+3y=1\\3x-3y=9\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}5x=10\\x-y=3\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2\\2-y=3\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
\(\hept{\begin{cases}x^2=y^3-3y^2+2y\\y^2=x^3-3x^2+2x\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=y^3-3y^2+2y\\x^2-y^2=y^3-x^3-3y^2+3x^2+2y-2x\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2=y^3-3y^2+2y\\2\left(y-x\right)\left(y+x\right)=\left(y-x\right)\left(y^2+xy+x^2\right)+2\left(y-x\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2=y^3-3y^2+2y\\\left(y-x\right)\left[xy+\left(x-1\right)^2+\left(y-1\right)^2\right]=0\end{cases}}\)
Theo Cauchy-schwarz có: \(\frac{\left(x-1\right)^2}{1}+\frac{\left(1-y\right)^2}{1}\ge\frac{\left(x-y\right)^2}{2}\)Dấu "=" xảy ra <=> x+y=2 (1)
\(\Rightarrow xy+\left(x-1\right)^2+\left(y-1\right)^2\ge xy+\frac{x^2-2xy+y^2}{2}=x^2+y^2\ge0\) Dấu bằng xảy ra <=> x=y=0 (2)
Từ (1) và (2) => \(xy+\left(x-1\right)^2+\left(y-1\right)^2>0\)
\(\Rightarrow x=y\)
=> Hệ phương trình \(\Leftrightarrow\hept{\begin{cases}x^2=y^3-3y^2+2y\\y^2=y^3-3y^2+2y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2=y^3-3y^2+2y\\0=y^3-4y^2+2y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2=y^3-3y^2+2y\\0=y^3-4y^2+2y\end{cases}}\)
Tự làm nốt nhé
\(\left\{{}\begin{matrix}x+y=80\\2x+3y=198\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+3y=240\\2x+3y=198\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y=80\\x=240-198=42\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=42\\y=38\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y=80\\2x+3y=198\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x+2y=160\\2x+3y=198\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=38\\2x+3\cdot38=198\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=38\\2x=84\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=38\\x=42\end{matrix}\right.\)
Vậy (42;38) là nghiệm