Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ne\pm m\)
\(\frac{m}{x-m}+\frac{3m^2-4m+3}{m^2-x^2}=\frac{1}{x+m}\)
\(\Leftrightarrow\frac{m\left(x+m\right)}{x^2-m^2}-\frac{3m^2-4m+3}{x^2-m^2}-\frac{x-m}{x^2-m^2}=0\)
\(\Leftrightarrow\frac{mx+m^2-3m^2+4m-3-x+m}{x^2-m^2}=0\)
\(\Leftrightarrow mx+m^2-3m^2+4m-3-x+m=0\)
\(\Leftrightarrow\left(m-1\right)x-2m^2+5m-3=0\)
Với \(m-1=0\Leftrightarrow m=1\), khi đó \(-2m^2+5m-3=0\)
Vậy thì phương trình có vô số nghiệm khác \(\pm1.\)
Với \(m-1\ne0\Leftrightarrow m\ne1\)
Khi đó phương trình có nghiệm duy nhất \(x=\frac{2m^2-5m+3}{m-1}=2m-3\)
KL:
Với \(m=\pm1,\) phương trình vô số nghiệm khác \(\pm1.\)
Với \(m\ne\pm1,\) phương trình có một nghiệm duy nhất \(x=2m-3\)
a) x=3 có: 3(m-1) -m+5 =0
3m-3-m+5 =0 => m = -1
b) nếu m=1 có: (m-1)x = 0 => (m-1)x -m +5 = 0 => 4=0 vô lý
c) (m-1)x -m+5 =0 => x = (m-5)/(m-1)
+ nếu m=1 vô nghiệm
+ m khác 1 pt có nghiệm x =(m-5)/(m-1)