Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-3=0\\z+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
Ta có : 9x2 + y2 + 2z2 - 18x + 4z - 6y + 20 = 0
<=> 9x2 - 18x + 9 + y2 - 6y + 9 + 2z2 + 4z + 2 = 0
<=> 9(x2 - 2x + 1) + (y2 - 6y + 9) + 2(z2 + 2z + 1) = 0
<=> 9(x - 1)2 + (y - 3)2 + 2(z + 1)2 = 0 (*)
Vì \(9\left(x-1\right)^2\ge0\forall x\in R\)
\(\left(y-3\right)^2\ge0\forall y\in R\)
\(2\left(z+1\right)^2\ge0\forall z\in R\)
Nên : pt (*) <=> \(\hept{\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\\left(z+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)
Vậy pt có nhiệm (x;y;z) = (1;3;-1)
\(9x^2+y^2+2z^2-18x+4z-6z+20=0\)
\(\Leftrightarrow9\left(x^2-2x+1\right)+\left(y^2-6y+9\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-3=0\\z+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)
\(\Leftrightarrow9\left(x^2-2x+1\right)+\left(y-3\right)^2+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
+ \(\left\{{}\begin{matrix}9\left(x-1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\\2\left(z+1\right)^2\ge0\forall z\end{matrix}\right.\)
\(\Rightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2\ge0\forall x,y,z\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\left(TM\right)\)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)(*)
Vì \(\left(x-1\right)\ge0;\left(y-3\right)^2\ge0;\left(z+1\right)^2\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=1\\y=3\\z=-1\end{cases}}}\)
pt ⇔ ( 9x2 - 18x + 9 ) + ( y2 - 6y + 9 ) + ( 2z2 + 4z + 2 ) = 0
⇔ 9( x2 - 2x + 1 ) + ( y - 3 )2 + 2( z2 + 2z + 1 ) = 0
⇔ 9( x - 1 )2 + ( y - 3 )2 + 2( z + 1 )2 = 0
Vì \(\hept{\begin{cases}9\left(x-1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\\2\left(z+1\right)^2\ge0\forall z\end{cases}}\Rightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2\ge0\forall x,y,z\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)
Vậy
Cái này làm sao mà phân tích được ;-; Tớ bày cách khác nhé :>
9x2 + y2 + 2z2 - 18x + 4z - 6y + 20
= ( 9x2 - 18x + 9 ) + ( y2 - 6y + 9 ) + ( 2z2 + 4z + 2 )
= ( 3x - 3 )2 + ( y - 3 )2 + 2( z2 + 2z + 1 )
= ( 3x - 3 )2 + ( y - 3 )2 + 2( z + 1 )2
9x^2+ y^2 + 2z^2 - 18x + 4z - 6y + 20 = 0
<=>9x2-18x+9+y2-6y+9+2z2+4z+2=0
<=>(3x-3)2+(y-3)2+2.(z2+2z+1)=0
<=>(3x-3)2+(y-3)2+2.(z+1)2=0
<=>3x-3=0 và y-3=0 và z+1=0
<=>x=1 và y=3 và z=-1
9x2 + y2 + 2z2 - 18x + 4z - 6y + 20 = 0
( 9x2 -18x + 9) +( y2 - 6y + 9) +2(z2+2z +1) = 0
( 3x-3)2 + ( y-3)2 + 2( z+1)2 = 0
vì ( 3x-3)^2 , (y-3)^2 , 2( z+1)^2 >0 \(\Rightarrow\left(3x-3\right)^2=\left(y-3\right)^2=2\left(z+1\right)^2\))^2
\(\Leftrightarrow\hept{\begin{cases}3x-3=0\\y-3=0\\2\left(z+1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)
9x2 + y2 + 2z2 - 18x + 4z - 6y + 20 = 0
<=> 9x2 - 18x + 9 + y2 - 6y + 9 + 2x2 + 4z + 2 = 0
<=> 9(x2 - 2x + 1) + (y - 3)2 + 2(z2 + 2z + 1) = 0
<=> 9(x - 1)2 + (y - 3)2 + 2(z + 1)2 = 0
<=> \(\left\{\begin{matrix}x-1=0\\y-3=0\\z+1=0\end{matrix}\right.\)
<=> \(\left\{\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)