Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)
\(\Leftrightarrow x^2-2x+12-8-x^2=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow-2x=-4\)
hay x=2(loại)
Vậy: \(S=\varnothing\)
b) Ta có: \(\left|2x+6\right|-x=3\)
\(\Leftrightarrow\left|2x+6\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy: S={-3}
\(\dfrac{1}{x-2}-\dfrac{6}{x+3}=\dfrac{5}{6-x^2-x}\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{6}{x+3}=\dfrac{5}{\left(x-2\right)\left(x+3\right)}\)
\(\Leftrightarrow\dfrac{1\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}-\dfrac{6\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}=\dfrac{5}{\left(x-2\right)\left(x+3\right)}\)
\(\Leftrightarrow x+3-6x+12=5\)
\(\Leftrightarrow-5x+15=5\)
\(\Leftrightarrow x=2\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{x+2}+\frac{1}{x+5}+\frac{1}{x+7}-\frac{1}{x+1}-\frac{1}{x+3}-\frac{1}{x+4}-\frac{1}{x+6}=0\)
\(\Leftrightarrow\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{\left(x+4\right)\left(x+5\right)}-\frac{1}{\left(x+6\right)\left(x+7\right)}=0\)
\(\Leftrightarrow\frac{8x+20}{x\left(x+1\right)\left(x+4\right)\left(x+5\right)}+\frac{8x+36}{\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x+7\right)}=0\).Đến đây mk chịu
\(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}+\dfrac{1}{\left(x-5\right)\left(x-6\right)}=\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-2}+\dfrac{1}{x-2}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-....+\dfrac{1}{x-5}-\dfrac{1}{x-6}=\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-6}=\dfrac{1}{10}\Leftrightarrow\dfrac{x-6-x+1}{\left(x-1\right)\left(x-6\right)}=\dfrac{1}{10}\)
\(\Leftrightarrow x^2-7x+56=0\Leftrightarrow x^2-2.\dfrac{7}{2}x+\dfrac{49}{4}+\dfrac{175}{4}=\left(x-\dfrac{7}{2}\right)^2+\dfrac{175}{4}>0\)
Vậy phương trình vô nghiệm
\(\left(x+2\right)\left(x+5\right)\left(x-6\right)\left(x-9\right)=280\)
\(\Leftrightarrow\)\(\left(x^2-4x-12\right)\left(x^2-4x-45\right)-280=0\)
Đặt \(x^2-4x-12=t\) ta có:
\(t\left(t-33\right)-280=0\)
\(\Leftrightarrow\)\(t^2-33t-280=0\)
\(\Leftrightarrow\)\(t^2-40t+7t-280=0\)
\(\Leftrightarrow\)\(\left(t-40\right) \left(t+7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}t-40=0\\t+7=0\end{cases}}\)
Đến đây bn thay trở lại và tìm x nhé! chúc bn hok tốt
x(x + 2)(x2 + 2x + 5) = 6
\(\Leftrightarrow\)(x2 + 2x)(x2 + 2x + 5) = 6
Đặt x2 + 2x = y; ta có
y(y + 5) = 6
\(\Leftrightarrow\)y2 + 5y - 6 = 0
\(\Leftrightarrow\)y2 - y + 6y - 6 = 0
\(\Leftrightarrow\)y(y - 1)+ 6(y - 1) = 0
\(\Leftrightarrow\)(y - 1)(y + 6) = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}y-1=0\\y+6=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}y=1\\y=-6\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x^2+2x=1\\x^2+2x=-6\end{cases}}\)
Mk lm đc thế thôi, bn lm tiếp nha
We have \(\frac{1}{2}\left(4x-2\right)=5-\left(6-x\right)\)
\(\Leftrightarrow2x-1=x-1\)
\(\Leftrightarrow3x=0\)
\(\Leftrightarrow x=0\)
So ...
1/2(4x-2)=5-(6-x)
=>2x-1=5-6+x
=>2x-x=5-6+1
=>x=0
Vậy S = {0}
đúng 100% nhé, ko đúng thì ko phải hs lớp 8
Ta có:\(\left|x+5\right|+\left|x-1\right|=\left|x+5\right|+\left|1-x\right|\ge\left|x+5+1-x\right|=6\)
\(\Rightarrow\left|x+5\right|+\left|x+2\right|+\left|x-1\right|=6\Leftrightarrow x=-2\)
x x+5 x+2 x-1 tổng -5 -2 1 0 0 0 -x-5 -x-2 -x+1 x+5 -x-2 -x+1 x+5 x+5 -x+1 x+2 x+2 x-1 -3x-6 -x+4 x+8 3x+4
* với x ≥ -5
-3x-6=6
⇔ -3x=12
⇔ x=-4 (tm)
*với -5 ≤ x < -2
-x+4=6
⇔ -x=2
⇔ x=-2 (ktm)
* với -2 ≤ x < 1
x+8=6
⇔ x=6-8
⇔ x= -2 (tm)
* với x< 1
3x+4 =6
⇔ 3x=2
⇔ x= \(\dfrac{2}{3}\) (tm)
vậy tập nghiệm của phương trình là S \(\left\{\dfrac{2}{3};-2;-4\right\}\)