Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}=m\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(2-\sqrt{x-4}\right)^2}=m\)
\(\Leftrightarrow\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|=m\)
mà \(\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|\)
\(\ge\left|\sqrt{x-4}+2+2-\sqrt{x-4}\right|=4\)
\(\Rightarrow m\ge4\) thì pt trên có no
giải pt
a)\(\dfrac{1}{x+1}+\dfrac{3}{2x+1}=\dfrac{8}{x-2}\)
b)\(\sqrt{2x+1}+\sqrt{3-x}=\sqrt{3x+5}\)
a/ \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=4\)
\(\Leftrightarrow x+\sqrt{\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2}=4\)
\(\Leftrightarrow x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}=4\)
Làm nốt
b/ \(\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
\(pt\Leftrightarrow\sqrt{2x^2+8x+6}-4+\sqrt{x^2-1}-2x+2=0\)
\(\Leftrightarrow\frac{2\left(x-1\right)\left(x+5\right)}{\sqrt{2x^2+8x+6}+4}+\sqrt{x^2-1}-2\left(x-1\right)=0\)
Giải nốt nhá
\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
\(\Leftrightarrow\sqrt{2\left(x^2+4x+3\right)}+\sqrt{x^2-1}=2x+2\)
\(\Leftrightarrow\sqrt{2\left(x+1\right)\left(x-3\right)}+\sqrt{x^2-1}=2x+2\)
\(\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{x^2-1^2}=2x+2\)
\(\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x+1\right)\left(x-1\right)}=2x+2\)
\(\Leftrightarrow2x^2+8x+6+\left(2x+2\right)\sqrt{2\left(x+3\right)\left(x-1\right)}+\left(x+1\right)\left(x-1\right)=4\left(x+1\right)^2\)
\(\Leftrightarrow\left(2x+2\right)\sqrt{2\left(x+3\right)\left(x-1\right)}=4\left(x+1\right)^2-2x^2-8x-6-\left(x+1\right)\left(x-1\right)\)
\(\Leftrightarrow8\left(x+1\right)^3.\left(x+3\right)\left(x-1\right)=\left(x+1\right)^2.\left(x-1\right)^2\)
\(\Leftrightarrow8x^4-8x^3+24x^3-24x^2+16x^3-16x^2+48x^2-48x+8x^2-8x+24x-24\)\(=x^4-2x^3+x^2+2x^3-4x^2+2x+x-2x+1\)
\(\Leftrightarrow8x^4+32x^3+16x^3-32x=x^4-2x^3+x^2+2x^3-4x^2+2x+x^2-2x+1\)
\(\Leftrightarrow8x^4+32x^3+16x^2-32x-24=x^4-2x^2+1\)
\(\Leftrightarrow8x^4+32x^2+16x^2-32x-24-x^4+2x^2-1=0\)
\(\Leftrightarrow7x^4+32x^3+18x^2-32x-25=0\)
\(\Leftrightarrow\left(7x^3+39x^2+57x+25\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(7x^2+25x+7x+25\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[x\left(7x+25\right)+\left(7x+25\right)\right]\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(7x+25\right)\left(x+1\right)\left(x-1\right)=0\)
Nhưng \(7x+25\ne0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
Vậy: nghiệm phương trình là x = 1; x = -1
Kiểm tra lại đề câu a, \(...+24\) thì pt vô nghiệm, phải là \(...-24\) mới có lý
b/ \(x^2-\left(y+1\right)x+y^2-y-2=0\) (1)
\(\Delta=\left(y+1\right)^2-4\left(y^2-y-2\right)\ge0\)
\(\Leftrightarrow-3y^2+6y+9\ge0\)
\(\Leftrightarrow-1\le y\le3\Rightarrow y=\left\{-1;0;1;2;3\right\}\)
Thay lần lượt vào pt ban đầu để tìm x nguyên
ĐKXĐ: ...
\(\Leftrightarrow x^2+\left(x^2+8x\right)+\left(14-2\sqrt{x^2+8x}\right)x-14\sqrt{x^2+8x}+24=0\)
Đặt \(\sqrt{x^2+8x}=a\ge0\) pt trở thành:
\(x^2+a^2+\left(14-2x\right)x-14a+24=0\)
\(\Leftrightarrow x^2-2ax+a^2+14\left(x-a\right)+24=0\)
\(\Leftrightarrow\left(x-a\right)^2+14\left(x-a\right)+24=0\)
\(\Leftrightarrow\left(x-a+2\right)\left(x-a+12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=x+2\\a=x+12\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+8x}=x+2\left(x\ge-2\right)\\\sqrt{x^2+8x}=x+12\left(x\ge-12\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+8x=x^2+4x+4\\x^2+8x=x^2+24x+144\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-9\end{matrix}\right.\)
a) \(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\) (*)
đk: x >/ 0
(*) \(\Leftrightarrow2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)
\(\Leftrightarrow13\sqrt{2x}=28\) \(\Leftrightarrow\sqrt{2x}=\dfrac{28}{13}\Leftrightarrow2x=\left(\dfrac{28}{13}\right)^2\Leftrightarrow x=\dfrac{392}{169}\left(N\right)\)
Kl: \(x=\dfrac{392}{169}\)
b) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\) (*)
đk: x >/ 5
(*) \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\Leftrightarrow x-5=4\Leftrightarrow x=9\left(N\right)\)
Kl: x=9
c) \(\sqrt{\dfrac{3x-2}{x+1}}=2\) (*)
Đk: \(\left[{}\begin{matrix}x< -1\\x\ge\dfrac{2}{3}\end{matrix}\right.\)
(*) \(\Leftrightarrow\dfrac{3x-2}{x+1}=4\Leftrightarrow3x-2=4x+4\Leftrightarrow x=-6\left(N\right)\)
Kl: x=-6
d) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (*)
Đk: \(x\ge\dfrac{4}{5}\)
(*) \(\Leftrightarrow\sqrt{5x-4}=2\sqrt{x+2}\Leftrightarrow5x-4=4x+8\Leftrightarrow x=12\left(N\right)\)
Kl: x=12
b) ta có pt \(\sqrt{25-x^2}-\sqrt{9-x^2}=2\)
Đặt \(\sqrt{25-x^2}=a;\sqrt{9-x^2}=b\left(a,b\ge0\right)\Rightarrow a-b=2\)
Mà \(a^2-b^2=25-x^2-9+x^2=16\Leftrightarrow\left(a-b\right)\left(a+b\right)=16\Leftrightarrow a+b=8\)
ta có a-b=2;a+b=8=> a=5;b=3
a) ta có pt \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\Leftrightarrow x-\dfrac{4}{x}+\sqrt{2x-\dfrac{5}{x}}-\sqrt{x-\dfrac{1}{x}}=0\)
đặt \(\sqrt{2x-\dfrac{5}{x}}=a;\sqrt{x-\dfrac{1}{x}}=b\Rightarrow a^2-b^2=2x-\dfrac{5}{x}-x+\dfrac{1}{x}=x-\dfrac{4}{x}\)
nên pt \(\Leftrightarrow a^2-b^2+a-b=0\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)
a) Đk: \(\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\)
\(\sqrt{x^2-1}-x^2+1=0\)
\(\Leftrightarrow x^2-1-\sqrt{x^2-1}= 0\)
\(\Leftrightarrow\left(\sqrt{x^2-1}-1\right)\sqrt{x^2-1}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-1}-1=0\\\sqrt{x^2-1}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-1}=1\\x^2-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=2\left(1\right)\\x^2=1\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x=\pm\sqrt{2}\left(N\right)\)
\(\left(2\right)\Leftrightarrow x=\pm1\left(N\right)\)
Kl: \(x=\pm\sqrt{2}\), \(x=\pm1\)
b) Đk: \(\left[{}\begin{matrix}x\le-2\\x\ge2\end{matrix}\right.\)
\(\sqrt{x^2-4}-x+2=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-4=x^2-4x+4\\x\ge2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x=8\\x\ge2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\left(N\right)\\x\ge2\end{matrix}\right.\)
kl: x=2
c) \(\sqrt{x^4-8x^2+16}=2-x\)
\(\Leftrightarrow\sqrt{\left(x^2-4\right)^2}=2-x\)
\(\Leftrightarrow\left|x^2-4\right|=2-x\) (*)
Th1: \(x^2-4< 0\Leftrightarrow-2< x< 2\)
(*) \(\Leftrightarrow x^2-4=x-2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(L\right)\\x=-1\left(N\right)\end{matrix}\right.\)
Th2: \(x^2-4\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-2\\x\ge2\end{matrix}\right.\)
(*)\(\Leftrightarrow x^2-4=2-x\Leftrightarrow x^2+x-6=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(N\right)\\x=-3\left(N\right)\end{matrix}\right.\)
Kl: x=-3, x=-1,x=2
d) \(\sqrt{9x^2+6x+1}=\sqrt{11-6\sqrt{2}}\)
\(\Leftrightarrow\sqrt{\left(3x+1\right)^2}=\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(\Leftrightarrow\left|3x+1\right|=3-\sqrt{2}\) (*)
Th1: \(3x+1\ge0\Leftrightarrow x\ge-\dfrac{1}{3}\)
(*) \(\Leftrightarrow3x+1=3-\sqrt{2}\Leftrightarrow x=\dfrac{2-\sqrt{2}}{3}\left(N\right)\)
Th2: \(3x+1< 0\Leftrightarrow x< -\dfrac{1}{3}\)
(*) \(\Leftrightarrow3x+1=-3+\sqrt{2}\Leftrightarrow x=\dfrac{-4+\sqrt{2}}{3}\left(N\right)\)
Kl: \(x=\dfrac{2-\sqrt{2}}{3}\), \(x=\dfrac{-4+\sqrt{2}}{3}\)
e) Đk: \(x\ge-\dfrac{3}{2}\)
\(\sqrt{4^2-9}=2\sqrt{2x+3}\) \(\Leftrightarrow\sqrt{7}=2\sqrt{2x+3}\) \(\Leftrightarrow7=8x+12\)
\(\Leftrightarrow8x=-5\Leftrightarrow x=-\dfrac{5}{8}\left(N\right)\)
kl: \(x=-\dfrac{5}{8}\)
f) Đk: x >/ 5
\(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\)
\(\Leftrightarrow x=9\left(N\right)\)
kl: x=9
\(x^2+2x\sqrt{x+\dfrac{1}{x}}=8x-1\left(x\ne0\right)\)
Vì \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge\dfrac{1}{8}\)
Vì \(x\ne0\Rightarrow\) chia 2 vế cho x,ta được:
\(x+2\sqrt{x+\dfrac{1}{x}}=8-\dfrac{1}{x}\Rightarrow x+\dfrac{1}{x}+2\sqrt{x+\dfrac{1}{x}}=8\)
Đặt \(\sqrt{x+\dfrac{1}{x}}=a\left(a>0\right)\)
pt trở thành \(a^2+2a-8=0\Rightarrow a^2-2a+4a-8=0\)
\(\Rightarrow a\left(a-2\right)+4\left(a-2\right)=0\Rightarrow\left(a-2\right)\left(a+4\right)=0\)
mà \(a>0\Rightarrow a=2\Rightarrow\sqrt{x+\dfrac{1}{x}}=2\Rightarrow x+\dfrac{1}{x}=4\)
\(\Rightarrow\dfrac{x^2-4x+1}{x}=0\Rightarrow x^2-4x+1=0\)
\(\Delta=\left(-4\right)^2-4=12\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{4-\sqrt{12}}{2}=2-\sqrt{3}\\x-\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{4+\sqrt{12}}{2}=2+\sqrt{3}\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{2-\sqrt{3};2+\sqrt{3}\right\}\)
Cho mình hỏi sao VT lại lớn hơn 0 vậy ạ?